Enhance knowledge management in CrewAI

- Added `KnowledgeConfig` class to configure knowledge retrieval parameters such as `limit` and `score_threshold`.
- Updated `Agent` and `Crew` classes to utilize the new knowledge configuration for querying knowledge sources.
- Enhanced documentation to clarify the addition of knowledge sources at both agent and crew levels.
- Introduced new tips in documentation to guide users on knowledge source management and configuration.
This commit is contained in:
lorenzejay
2025-04-17 15:45:09 -07:00
parent 870dffbb89
commit d93e08a3a6
8 changed files with 149 additions and 21 deletions

View File

@@ -10,6 +10,8 @@ from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
from crewai.agents.parser import CrewAgentParser, OutputParserException
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.knowledge_config import KnowledgeConfig
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
@@ -259,7 +261,9 @@ def test_cache_hitting():
def handle_tool_end(source, event):
received_events.append(event)
with (patch.object(CacheHandler, "read") as read,):
with (
patch.object(CacheHandler, "read") as read,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
@@ -1611,6 +1615,62 @@ def test_agent_with_knowledge_sources():
assert "red" in result.raw.lower()
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
knowledge_config = KnowledgeConfig(limit=10, score_threshold=0.5)
with patch.object(Knowledge, "query") as mock_knowledge_query:
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
knowledge_config=knowledge_config,
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
**knowledge_config.model_dump(),
)
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
knowledge_config = KnowledgeConfig()
with patch.object(Knowledge, "query") as mock_knowledge_query:
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
knowledge_config=knowledge_config,
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
**knowledge_config.model_dump(),
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_extensive_role():
content = "Brandon's favorite color is red and he likes Mexican food."