mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
Add AI/ML API provider integration
- Add AI/ML API models to LLM_CONTEXT_WINDOW_SIZES with openai/ prefix - Include popular models: Llama 3.1/3.2, Claude, Mistral, Qwen, DeepSeek - Create comprehensive test suite for AI/ML API integration - Add documentation with usage examples and setup instructions - Update README to mention AI/ML API support alongside other providers - Resolves #2953 Co-Authored-By: João <joao@crewai.com>
This commit is contained in:
165
docs/aiml_api_integration.md
Normal file
165
docs/aiml_api_integration.md
Normal file
@@ -0,0 +1,165 @@
|
||||
# AI/ML API Integration with CrewAI
|
||||
|
||||
CrewAI now supports AI/ML API as a provider, giving you access to 300+ AI models through their platform. AI/ML API provides a unified interface to models from various providers including Meta (Llama), Anthropic (Claude), Mistral, Qwen, and more.
|
||||
|
||||
## Setup
|
||||
|
||||
1. Get your API key from [AI/ML API](https://aimlapi.com)
|
||||
2. Set your API key as an environment variable:
|
||||
|
||||
```bash
|
||||
export AIML_API_KEY="your-api-key-here"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
AI/ML API models use the `openai/` prefix for compatibility with LiteLLM. Here are some examples:
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python
|
||||
from crewai import Agent, LLM
|
||||
|
||||
# Use Llama 3.1 70B through AI/ML API
|
||||
llm = LLM(
|
||||
model="openai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
api_key="your-aiml-api-key" # or set AIML_API_KEY env var
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Help with research tasks",
|
||||
backstory="You are an expert researcher with access to advanced AI capabilities",
|
||||
llm=llm
|
||||
)
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
Popular models available through AI/ML API:
|
||||
|
||||
#### Llama Models
|
||||
- `openai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo` - Largest Llama model
|
||||
- `openai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo` - High performance
|
||||
- `openai/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo` - Fast and efficient
|
||||
- `openai/meta-llama/Meta-Llama-3.2-90B-Vision-Instruct-Turbo` - Vision capabilities
|
||||
|
||||
#### Claude Models
|
||||
- `openai/anthropic/claude-3-5-sonnet-20241022` - Latest Claude Sonnet
|
||||
- `openai/anthropic/claude-3-5-haiku-20241022` - Fast Claude model
|
||||
- `openai/anthropic/claude-3-opus-20240229` - Most capable Claude
|
||||
|
||||
#### Other Models
|
||||
- `openai/mistralai/Mixtral-8x7B-Instruct-v0.1` - Mistral's mixture of experts
|
||||
- `openai/Qwen/Qwen2.5-72B-Instruct-Turbo` - Qwen's large model
|
||||
- `openai/deepseek-ai/DeepSeek-V2.5` - DeepSeek's latest model
|
||||
|
||||
### Complete Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
|
||||
# Configure AI/ML API LLM
|
||||
llm = LLM(
|
||||
model="openai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
api_key="your-aiml-api-key"
|
||||
)
|
||||
|
||||
# Create an agent with AI/ML API model
|
||||
researcher = Agent(
|
||||
role="AI Research Specialist",
|
||||
goal="Analyze AI trends and provide insights",
|
||||
backstory="You are an expert in artificial intelligence with deep knowledge of current trends and developments",
|
||||
llm=llm
|
||||
)
|
||||
|
||||
# Create a task
|
||||
research_task = Task(
|
||||
description="Research the latest developments in large language models and summarize key findings",
|
||||
expected_output="A comprehensive summary of recent LLM developments with key insights",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
You can configure AI/ML API in several ways:
|
||||
|
||||
```python
|
||||
# Method 1: Direct API key
|
||||
llm = LLM(
|
||||
model="openai/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
api_key="your-aiml-api-key"
|
||||
)
|
||||
|
||||
# Method 2: Environment variable (recommended)
|
||||
# Set AIML_API_KEY in your environment
|
||||
llm = LLM(model="openai/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo")
|
||||
|
||||
# Method 3: Base URL configuration (if needed)
|
||||
llm = LLM(
|
||||
model="openai/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
base_url="https://api.aimlapi.com/v1",
|
||||
api_key="your-aiml-api-key"
|
||||
)
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
AI/ML API models through CrewAI support:
|
||||
|
||||
- **Function Calling**: Most models support tool usage and function calling
|
||||
- **Streaming**: Real-time response streaming for better user experience
|
||||
- **Context Windows**: Optimized context window management for each model
|
||||
- **Vision Models**: Some models support image understanding capabilities
|
||||
- **Structured Output**: JSON and Pydantic model output formatting
|
||||
|
||||
## Model Selection Guide
|
||||
|
||||
Choose the right model for your use case:
|
||||
|
||||
- **For complex reasoning**: Use Llama 3.1 405B or Claude 3.5 Sonnet
|
||||
- **For balanced performance**: Use Llama 3.1 70B or Claude 3.5 Haiku
|
||||
- **For speed and efficiency**: Use Llama 3.1 8B or smaller models
|
||||
- **For vision tasks**: Use Llama 3.2 Vision models
|
||||
- **For coding**: Consider DeepSeek or specialized coding models
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Authentication Error**: Ensure your AIML_API_KEY is set correctly
|
||||
2. **Model Not Found**: Verify the model name uses the correct `openai/` prefix
|
||||
3. **Rate Limits**: AI/ML API has rate limits; implement appropriate retry logic
|
||||
4. **Context Length**: Monitor context window usage for optimal performance
|
||||
|
||||
### Getting Help
|
||||
|
||||
- Check the [AI/ML API Documentation](https://docs.aimlapi.com)
|
||||
- Review model-specific capabilities and limitations
|
||||
- Monitor usage and costs through the AI/ML API dashboard
|
||||
|
||||
## Migration from Other Providers
|
||||
|
||||
If you're migrating from other providers:
|
||||
|
||||
```python
|
||||
# From OpenAI
|
||||
# OLD: llm = LLM(model="gpt-4")
|
||||
# NEW: llm = LLM(model="openai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo")
|
||||
|
||||
# From Anthropic
|
||||
# OLD: llm = LLM(model="claude-3-sonnet")
|
||||
# NEW: llm = LLM(model="openai/anthropic/claude-3-5-sonnet-20241022")
|
||||
```
|
||||
|
||||
The integration maintains full compatibility with CrewAI's existing features while providing access to AI/ML API's extensive model catalog.
|
||||
Reference in New Issue
Block a user