diff --git a/crewai/agent.py b/crewai/agent.py index 195943ece..6f3ff8147 100644 --- a/crewai/agent.py +++ b/crewai/agent.py @@ -8,11 +8,7 @@ from langchain.chat_models import ChatOpenAI as OpenAI from langchain.tools.render import render_text_description from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ReActSingleInputOutputParser -from langchain.memory import ( - ConversationSummaryMemory, - ConversationEntityMemory, - CombinedMemory -) +from langchain.memory import ConversationSummaryMemory from .prompts import Prompts @@ -22,6 +18,10 @@ class Agent(BaseModel): role: str = Field(description="Role of the agent") goal: str = Field(description="Objective of the agent") backstory: str = Field(description="Backstory of the agent") + allow_delegation: bool = Field( + description="Allow delegation of tasks to agents", + default=True + ) tools: List[Any] = Field( description="Tools at agents disposal", default=[] @@ -30,8 +30,7 @@ class Agent(BaseModel): description="LLM that will run the agent", default=OpenAI( temperature=0.7, - model_name="gpt-4", - verbose=False + model_name="gpt-4" ) ) @@ -47,25 +46,25 @@ class Agent(BaseModel): inner_agent = { "input": lambda x: x["input"], "tools": lambda x: x["tools"], - "entities": lambda x: x["entities"], "tool_names": lambda x: x["tool_names"], "chat_history": lambda x: x["chat_history"], "agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps']), } | execution_prompt | llm_with_bind | ReActSingleInputOutputParser() - summary_memory = ConversationSummaryMemory(llm=self.llm, memory_key='chat_history', input_key="input") - entity_memory = ConversationEntityMemory(llm=self.llm, input_key="input") - memory = CombinedMemory(memories=[entity_memory, summary_memory]) + summary_memory = ConversationSummaryMemory( + llm=self.llm, + memory_key='chat_history', + input_key="input" + ) self.agent_executor = AgentExecutor( agent=inner_agent, tools=self.tools, - memory=memory, - verbose=False, + memory=summary_memory, handle_parsing_errors=True ) - def execute_task(self, task: str, context: str = None) -> str: + def execute_task(self, task: str, context: str = None, tools: List[Any] = None) -> str: """ Execute a task with the agent. Parameters: @@ -80,12 +79,13 @@ class Agent(BaseModel): context ]) - print(f"Executing task: {task}") + tools = tools or self.tools + self.agent_executor.tools = tools return self.agent_executor.invoke({ "input": task, - "tool_names": self.__tools_names(), - "tools": render_text_description(self.tools), + "tool_names": self.__tools_names(tools), + "tools": render_text_description(tools), })['output'] - def __tools_names(self) -> str: - return ", ".join([t.name for t in self.tools]) \ No newline at end of file + def __tools_names(self, tools) -> str: + return ", ".join([t.name for t in tools]) \ No newline at end of file