mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
chore: improve typing and docs in agents leaf files (#3461)
- Add typing and Google-style docstrings to agents leaf files - Add TODO notes
This commit is contained in:
@@ -1,29 +1,58 @@
|
||||
"""Base converter adapter for structured output conversion."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.agent_adapters.base_agent_adapter import BaseAgentAdapter
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
class BaseConverterAdapter(ABC):
|
||||
"""Base class for all converter adapters in CrewAI.
|
||||
"""Abstract base class for converter adapters in CrewAI.
|
||||
|
||||
This abstract class defines the common interface and functionality that all
|
||||
converter adapters must implement for converting structured output.
|
||||
Defines the common interface for converting agent outputs to structured formats.
|
||||
All converter adapters must implement the methods defined here.
|
||||
"""
|
||||
|
||||
def __init__(self, agent_adapter):
|
||||
def __init__(self, agent_adapter: BaseAgentAdapter) -> None:
|
||||
"""Initialize the converter adapter.
|
||||
|
||||
Args:
|
||||
agent_adapter: The agent adapter to configure for structured output.
|
||||
"""
|
||||
self.agent_adapter = agent_adapter
|
||||
|
||||
@abstractmethod
|
||||
def configure_structured_output(self, task) -> None:
|
||||
def configure_structured_output(self, task: Task) -> None:
|
||||
"""Configure agents to return structured output.
|
||||
Must support json and pydantic output.
|
||||
|
||||
Must support both JSON and Pydantic output formats.
|
||||
|
||||
Args:
|
||||
task: The task requiring structured output.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def enhance_system_prompt(self, base_prompt: str) -> str:
|
||||
"""Enhance the system prompt with structured output instructions."""
|
||||
pass
|
||||
"""Enhance the system prompt with structured output instructions.
|
||||
|
||||
Args:
|
||||
base_prompt: The original system prompt.
|
||||
|
||||
Returns:
|
||||
Enhanced prompt with structured output guidance.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def post_process_result(self, result: str) -> str:
|
||||
"""Post-process the result to ensure it matches the expected format: string."""
|
||||
pass
|
||||
"""Post-process the result to ensure proper string format.
|
||||
|
||||
Args:
|
||||
result: The raw result from agent execution.
|
||||
|
||||
Returns:
|
||||
Processed result as a string.
|
||||
"""
|
||||
|
||||
@@ -1,29 +1,32 @@
|
||||
"""Base output converter for transforming text into structured formats."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class OutputConverter(BaseModel, ABC):
|
||||
"""
|
||||
Abstract base class for converting task results into structured formats.
|
||||
"""Abstract base class for converting text to structured formats.
|
||||
|
||||
This class provides a framework for converting unstructured text into
|
||||
either Pydantic models or JSON, tailored for specific agent requirements.
|
||||
It uses a language model to interpret and structure the input text based
|
||||
on given instructions.
|
||||
Uses language models to transform unstructured text into either Pydantic models
|
||||
or JSON objects based on provided instructions and target schemas.
|
||||
|
||||
Attributes:
|
||||
text (str): The input text to be converted.
|
||||
llm (Any): The language model used for conversion.
|
||||
model (Any): The target model for structuring the output.
|
||||
instructions (str): Specific instructions for the conversion process.
|
||||
max_attempts (int): Maximum number of conversion attempts (default: 3).
|
||||
text: The input text to be converted.
|
||||
llm: The language model used for conversion.
|
||||
model: The target Pydantic model class for structuring output.
|
||||
instructions: Specific instructions for the conversion process.
|
||||
max_attempts: Maximum number of conversion attempts (default: 3).
|
||||
"""
|
||||
|
||||
text: str = Field(description="Text to be converted.")
|
||||
llm: Any = Field(description="The language model to be used to convert the text.")
|
||||
model: Any = Field(description="The model to be used to convert the text.")
|
||||
model: type[BaseModel] = Field(
|
||||
description="The model to be used to convert the text."
|
||||
)
|
||||
instructions: str = Field(description="Conversion instructions to the LLM.")
|
||||
max_attempts: int = Field(
|
||||
description="Max number of attempts to try to get the output formatted.",
|
||||
@@ -31,11 +34,23 @@ class OutputConverter(BaseModel, ABC):
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def to_pydantic(self, current_attempt=1) -> BaseModel:
|
||||
"""Convert text to pydantic."""
|
||||
pass
|
||||
def to_pydantic(self, current_attempt: int = 1) -> BaseModel:
|
||||
"""Convert text to a Pydantic model instance.
|
||||
|
||||
Args:
|
||||
current_attempt: Current attempt number for retry logic.
|
||||
|
||||
Returns:
|
||||
Pydantic model instance with structured data.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def to_json(self, current_attempt=1) -> dict:
|
||||
"""Convert text to json."""
|
||||
pass
|
||||
def to_json(self, current_attempt: int = 1) -> dict[str, Any]:
|
||||
"""Convert text to a JSON dictionary.
|
||||
|
||||
Args:
|
||||
current_attempt: Current attempt number for retry logic.
|
||||
|
||||
Returns:
|
||||
Dictionary containing structured JSON data.
|
||||
"""
|
||||
|
||||
40
src/crewai/agents/cache/cache_handler.py
vendored
40
src/crewai/agents/cache/cache_handler.py
vendored
@@ -1,15 +1,45 @@
|
||||
from typing import Any, Dict, Optional
|
||||
"""Cache handler for tool usage results."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, PrivateAttr
|
||||
|
||||
|
||||
class CacheHandler(BaseModel):
|
||||
"""Callback handler for tool usage."""
|
||||
"""Handles caching of tool execution results.
|
||||
|
||||
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict)
|
||||
Provides in-memory caching for tool outputs based on tool name and input.
|
||||
|
||||
def add(self, tool, input, output):
|
||||
Notes:
|
||||
- TODO: Make thread-safe.
|
||||
"""
|
||||
|
||||
_cache: dict[str, Any] = PrivateAttr(default_factory=dict)
|
||||
|
||||
def add(self, tool: str, input: str, output: Any) -> None:
|
||||
"""Add a tool result to the cache.
|
||||
|
||||
Args:
|
||||
tool: Name of the tool.
|
||||
input: Input string used for the tool.
|
||||
output: Output result from tool execution.
|
||||
|
||||
Notes:
|
||||
- TODO: Rename 'input' parameter to avoid shadowing builtin.
|
||||
"""
|
||||
self._cache[f"{tool}-{input}"] = output
|
||||
|
||||
def read(self, tool, input) -> Optional[str]:
|
||||
def read(self, tool: str, input: str) -> Any | None:
|
||||
"""Retrieve a cached tool result.
|
||||
|
||||
Args:
|
||||
tool: Name of the tool.
|
||||
input: Input string used for the tool.
|
||||
|
||||
Returns:
|
||||
Cached result if found, None otherwise.
|
||||
|
||||
Notes:
|
||||
- TODO: Rename 'input' parameter to avoid shadowing builtin.
|
||||
"""
|
||||
return self._cache.get(f"{tool}-{input}")
|
||||
|
||||
Reference in New Issue
Block a user