mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 00:58:30 +00:00
Move to src dir usage (#99)
This commit is contained in:
4
src/crewai/__init__.py
Normal file
4
src/crewai/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
181
src/crewai/agent.py
Normal file
181
src/crewai/agent.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import uuid
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain.agents.format_scratchpad import format_log_to_str
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.memory import ConversationSummaryMemory
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents import (
|
||||
CacheHandler,
|
||||
CrewAgentExecutor,
|
||||
CrewAgentOutputParser,
|
||||
ToolsHandler,
|
||||
)
|
||||
from crewai.prompts import Prompts
|
||||
|
||||
|
||||
class Agent(BaseModel):
|
||||
"""Represents an agent in a system.
|
||||
|
||||
Each agent has a role, a goal, a backstory, and an optional language model (llm).
|
||||
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
|
||||
|
||||
Attributes:
|
||||
agent_executor: An instance of the CrewAgentExecutor class.
|
||||
role: The role of the agent.
|
||||
goal: The objective of the agent.
|
||||
backstory: The backstory of the agent.
|
||||
llm: The language model that will run the agent.
|
||||
memory: Whether the agent should have memory or not.
|
||||
verbose: Whether the agent execution should be in verbose mode.
|
||||
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
id: UUID4 = Field(
|
||||
default_factory=uuid.uuid4,
|
||||
frozen=True,
|
||||
description="Unique identifier for the object, not set by user.",
|
||||
)
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
llm: Optional[Any] = Field(
|
||||
default_factory=lambda: ChatOpenAI(
|
||||
temperature=0.7,
|
||||
model_name="gpt-4",
|
||||
),
|
||||
description="Language model that will run the agent.",
|
||||
)
|
||||
memory: bool = Field(
|
||||
default=True, description="Whether the agent should have memory or not"
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=False, description="Verbose mode for the Agent Execution"
|
||||
)
|
||||
allow_delegation: bool = Field(
|
||||
default=True, description="Allow delegation of tasks to agents"
|
||||
)
|
||||
tools: List[Any] = Field(
|
||||
default_factory=list, description="Tools at agents disposal"
|
||||
)
|
||||
agent_executor: Optional[InstanceOf[CrewAgentExecutor]] = Field(
|
||||
default=None, description="An instance of the CrewAgentExecutor class."
|
||||
)
|
||||
tools_handler: Optional[InstanceOf[ToolsHandler]] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
)
|
||||
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
|
||||
default=CacheHandler(), description="An instance of the CacheHandler class."
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
if v:
|
||||
raise PydanticCustomError(
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_agent_executor(self) -> "Agent":
|
||||
if not self.agent_executor:
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
return self
|
||||
|
||||
def execute_task(
|
||||
self, task: str, context: str = None, tools: List[Any] = None
|
||||
) -> str:
|
||||
"""Execute a task with the agent.
|
||||
|
||||
Args:
|
||||
task: Task to execute.
|
||||
context: Context to execute the task in.
|
||||
tools: Tools to use for the task.
|
||||
|
||||
Returns:
|
||||
Output of the agent
|
||||
"""
|
||||
if context:
|
||||
task = "\n".join(
|
||||
[task, "\nThis is the context you are working with:", context]
|
||||
)
|
||||
|
||||
tools = tools or self.tools
|
||||
self.agent_executor.tools = tools
|
||||
|
||||
return self.agent_executor.invoke(
|
||||
{
|
||||
"input": task,
|
||||
"tool_names": self.__tools_names(tools),
|
||||
"tools": render_text_description(tools),
|
||||
},
|
||||
RunnableConfig(callbacks=[self.tools_handler]),
|
||||
)["output"]
|
||||
|
||||
def set_cache_handler(self, cache_handler) -> None:
|
||||
self.cache_handler = cache_handler
|
||||
self.tools_handler = ToolsHandler(cache=self.cache_handler)
|
||||
self.__create_agent_executor()
|
||||
|
||||
def __create_agent_executor(self) -> CrewAgentExecutor:
|
||||
"""Create an agent executor for the agent.
|
||||
|
||||
Returns:
|
||||
An instance of the CrewAgentExecutor class.
|
||||
"""
|
||||
agent_args = {
|
||||
"input": lambda x: x["input"],
|
||||
"tools": lambda x: x["tools"],
|
||||
"tool_names": lambda x: x["tool_names"],
|
||||
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
|
||||
}
|
||||
executor_args = {
|
||||
"tools": self.tools,
|
||||
"verbose": self.verbose,
|
||||
"handle_parsing_errors": True,
|
||||
}
|
||||
|
||||
if self.memory:
|
||||
summary_memory = ConversationSummaryMemory(
|
||||
llm=self.llm, memory_key="chat_history", input_key="input"
|
||||
)
|
||||
executor_args["memory"] = summary_memory
|
||||
agent_args["chat_history"] = lambda x: x["chat_history"]
|
||||
prompt = Prompts().task_execution_with_memory()
|
||||
else:
|
||||
prompt = Prompts().task_execution()
|
||||
|
||||
execution_prompt = prompt.partial(
|
||||
goal=self.goal,
|
||||
role=self.role,
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=["\nObservation"])
|
||||
inner_agent = (
|
||||
agent_args
|
||||
| execution_prompt
|
||||
| bind
|
||||
| CrewAgentOutputParser(
|
||||
tools_handler=self.tools_handler, cache=self.cache_handler
|
||||
)
|
||||
)
|
||||
self.agent_executor = CrewAgentExecutor(agent=inner_agent, **executor_args)
|
||||
|
||||
@staticmethod
|
||||
def __tools_names(tools) -> str:
|
||||
return ", ".join([t.name for t in tools])
|
||||
4
src/crewai/agents/__init__.py
Normal file
4
src/crewai/agents/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .cache.cache_handler import CacheHandler
|
||||
from .executor import CrewAgentExecutor
|
||||
from .output_parser import CrewAgentOutputParser
|
||||
from .tools_handler import ToolsHandler
|
||||
2
src/crewai/agents/cache/__init__.py
vendored
Normal file
2
src/crewai/agents/cache/__init__.py
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
from .cache_handler import CacheHandler
|
||||
from .cache_hit import CacheHit
|
||||
20
src/crewai/agents/cache/cache_handler.py
vendored
Normal file
20
src/crewai/agents/cache/cache_handler.py
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import PrivateAttr
|
||||
|
||||
|
||||
class CacheHandler:
|
||||
"""Callback handler for tool usage."""
|
||||
|
||||
_cache: PrivateAttr = {}
|
||||
|
||||
def __init__(self):
|
||||
self._cache = {}
|
||||
|
||||
def add(self, tool, input, output):
|
||||
input = input.strip()
|
||||
self._cache[f"{tool}-{input}"] = output
|
||||
|
||||
def read(self, tool, input) -> Optional[str]:
|
||||
input = input.strip()
|
||||
return self._cache.get(f"{tool}-{input}")
|
||||
18
src/crewai/agents/cache/cache_hit.py
vendored
Normal file
18
src/crewai/agents/cache/cache_hit.py
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from .cache_handler import CacheHandler
|
||||
|
||||
|
||||
class CacheHit(BaseModel):
|
||||
"""Cache Hit Object."""
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
# Making it Any instead of AgentAction to avoind
|
||||
# pydantic v1 vs v2 incompatibility, langchain should
|
||||
# soon be updated to pydantic v2
|
||||
action: Any = Field(description="Action taken")
|
||||
cache: CacheHandler = Field(description="Cache Handler for the tool")
|
||||
24
src/crewai/agents/exceptions.py
Normal file
24
src/crewai/agents/exceptions.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
|
||||
|
||||
class TaskRepeatedUsageException(OutputParserException):
|
||||
"""Exception raised when a task is used twice in a roll."""
|
||||
|
||||
error: str = "TaskRepeatedUsageException"
|
||||
message: str = "I just used the {tool} tool with input {tool_input}. So I already know the result of that and don't need to use it now.\n"
|
||||
|
||||
def __init__(self, tool: str, tool_input: str, text: str):
|
||||
self.text = text
|
||||
self.tool = tool
|
||||
self.tool_input = tool_input
|
||||
self.message = self.message.format(tool=tool, tool_input=tool_input)
|
||||
|
||||
super().__init__(
|
||||
error=self.error,
|
||||
observation=self.message,
|
||||
send_to_llm=True,
|
||||
llm_output=self.text,
|
||||
)
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
126
src/crewai/agents/executor.py
Normal file
126
src/crewai/agents/executor.py
Normal file
@@ -0,0 +1,126 @@
|
||||
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent import ExceptionTool
|
||||
from langchain.agents.tools import InvalidTool
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
from ..tools.cache_tools import CacheTools
|
||||
from .cache.cache_hit import CacheHit
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor):
|
||||
def _iter_next_step(
|
||||
self,
|
||||
name_to_tool_map: Dict[str, BaseTool],
|
||||
color_mapping: Dict[str, str],
|
||||
inputs: Dict[str, str],
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]:
|
||||
"""Take a single step in the thought-action-observation loop.
|
||||
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
try:
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
intermediate_steps,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**inputs,
|
||||
)
|
||||
except OutputParserException as e:
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
raise_error = not self.handle_parsing_errors
|
||||
else:
|
||||
raise_error = False
|
||||
if raise_error:
|
||||
raise ValueError(
|
||||
"An output parsing error occurred. "
|
||||
"In order to pass this error back to the agent and have it try "
|
||||
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
|
||||
f"This is the error: {str(e)}"
|
||||
)
|
||||
text = str(e)
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
if e.send_to_llm:
|
||||
observation = str(e.observation)
|
||||
text = str(e.llm_output)
|
||||
else:
|
||||
observation = "Invalid or incomplete response"
|
||||
elif isinstance(self.handle_parsing_errors, str):
|
||||
observation = self.handle_parsing_errors
|
||||
elif callable(self.handle_parsing_errors):
|
||||
observation = self.handle_parsing_errors(e)
|
||||
else:
|
||||
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
||||
output = AgentAction("_Exception", observation, text)
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(output, color="green")
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = ExceptionTool().run(
|
||||
output.tool_input,
|
||||
verbose=self.verbose,
|
||||
color=None,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
yield AgentStep(action=output, observation=observation)
|
||||
return
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
yield output
|
||||
return
|
||||
|
||||
# Override tool usage to use CacheTools
|
||||
if isinstance(output, CacheHit):
|
||||
cache = output.cache
|
||||
action = output.action
|
||||
tool = CacheTools(cache_handler=cache).tool()
|
||||
output = action.copy()
|
||||
output.tool_input = f"tool:{action.tool}|input:{action.tool_input}"
|
||||
output.tool = tool.name
|
||||
name_to_tool_map[tool.name] = tool
|
||||
color_mapping[tool.name] = color_mapping[action.tool]
|
||||
|
||||
actions: List[AgentAction]
|
||||
actions = [output] if isinstance(output, AgentAction) else output
|
||||
yield from actions
|
||||
for agent_action in actions:
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(agent_action, color="green")
|
||||
# Otherwise we lookup the tool
|
||||
if agent_action.tool in name_to_tool_map:
|
||||
tool = name_to_tool_map[agent_action.tool]
|
||||
return_direct = tool.return_direct
|
||||
color = color_mapping[agent_action.tool]
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
if return_direct:
|
||||
tool_run_kwargs["llm_prefix"] = ""
|
||||
# We then call the tool on the tool input to get an observation
|
||||
observation = tool.run(
|
||||
agent_action.tool_input,
|
||||
verbose=self.verbose,
|
||||
color=color,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
else:
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = InvalidTool().run(
|
||||
{
|
||||
"requested_tool_name": agent_action.tool,
|
||||
"available_tool_names": list(name_to_tool_map.keys()),
|
||||
},
|
||||
verbose=self.verbose,
|
||||
color=None,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
yield AgentStep(action=agent_action, observation=observation)
|
||||
75
src/crewai/agents/output_parser.py
Normal file
75
src/crewai/agents/output_parser.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import re
|
||||
from typing import Union
|
||||
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
|
||||
from .cache import CacheHandler, CacheHit
|
||||
from .exceptions import TaskRepeatedUsageException
|
||||
from .tools_handler import ToolsHandler
|
||||
|
||||
FINAL_ANSWER_ACTION = "Final Answer:"
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = (
|
||||
"Parsing LLM output produced both a final answer and a parse-able action:"
|
||||
)
|
||||
|
||||
|
||||
class CrewAgentOutputParser(ReActSingleInputOutputParser):
|
||||
"""Parses ReAct-style LLM calls that have a single tool input.
|
||||
|
||||
Expects output to be in one of two formats.
|
||||
|
||||
If the output signals that an action should be taken,
|
||||
should be in the below format. This will result in an AgentAction
|
||||
being returned.
|
||||
|
||||
```
|
||||
Thought: agent thought here
|
||||
Action: search
|
||||
Action Input: what is the temperature in SF?
|
||||
```
|
||||
|
||||
If the output signals that a final answer should be given,
|
||||
should be in the below format. This will result in an AgentFinish
|
||||
being returned.
|
||||
|
||||
```
|
||||
Thought: agent thought here
|
||||
Final Answer: The temperature is 100 degrees
|
||||
```
|
||||
|
||||
It also prevents tools from being reused in a roll.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
tools_handler: ToolsHandler
|
||||
cache: CacheHandler
|
||||
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish, CacheHit]:
|
||||
FINAL_ANSWER_ACTION in text
|
||||
regex = (
|
||||
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
||||
)
|
||||
if action_match := re.search(regex, text, re.DOTALL):
|
||||
action = action_match.group(1).strip()
|
||||
action_input = action_match.group(2)
|
||||
tool_input = action_input.strip(" ")
|
||||
tool_input = tool_input.strip('"')
|
||||
|
||||
if last_tool_usage := self.tools_handler.last_used_tool:
|
||||
usage = {
|
||||
"tool": action,
|
||||
"input": tool_input,
|
||||
}
|
||||
if usage == last_tool_usage:
|
||||
raise TaskRepeatedUsageException(
|
||||
tool=action, tool_input=tool_input, text=text
|
||||
)
|
||||
|
||||
if result := self.cache.read(action, tool_input):
|
||||
action = AgentAction(action, tool_input, text)
|
||||
return CacheHit(action=action, cache=self.cache)
|
||||
|
||||
return super().parse(text)
|
||||
44
src/crewai/agents/tools_handler.py
Normal file
44
src/crewai/agents/tools_handler.py
Normal file
@@ -0,0 +1,44 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
|
||||
from ..tools.cache_tools import CacheTools
|
||||
from .cache.cache_handler import CacheHandler
|
||||
|
||||
|
||||
class ToolsHandler(BaseCallbackHandler):
|
||||
"""Callback handler for tool usage."""
|
||||
|
||||
last_used_tool: Dict[str, Any] = {}
|
||||
cache: CacheHandler = None
|
||||
|
||||
def __init__(self, cache: CacheHandler = None, **kwargs: Any):
|
||||
"""Initialize the callback handler."""
|
||||
self.cache = cache
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def on_tool_start(
|
||||
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
|
||||
) -> Any:
|
||||
"""Run when tool starts running."""
|
||||
name = serialized.get("name")
|
||||
if name not in ["invalid_tool", "_Exception"]:
|
||||
tools_usage = {
|
||||
"tool": name,
|
||||
"input": input_str,
|
||||
}
|
||||
self.last_used_tool = tools_usage
|
||||
|
||||
def on_tool_end(self, output: str, **kwargs: Any) -> Any:
|
||||
"""Run when tool ends running."""
|
||||
if (
|
||||
"is not a valid tool" not in output
|
||||
and "Invalid or incomplete response" not in output
|
||||
and "Invalid Format" not in output
|
||||
):
|
||||
if self.last_used_tool["tool"] != CacheTools().name:
|
||||
self.cache.add(
|
||||
tool=self.last_used_tool["tool"],
|
||||
input=self.last_used_tool["input"],
|
||||
output=output,
|
||||
)
|
||||
132
src/crewai/crew.py
Normal file
132
src/crewai/crew.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
Json,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
|
||||
|
||||
class Crew(BaseModel):
|
||||
"""
|
||||
Represents a group of agents, defining how they should collaborate and the tasks they should perform.
|
||||
|
||||
Attributes:
|
||||
tasks: List of tasks assigned to the crew.
|
||||
agents: List of agents part of this crew.
|
||||
process: The process flow that the crew will follow (e.g., sequential).
|
||||
verbose: Indicates the verbosity level for logging during execution.
|
||||
config: Configuration settings for the crew.
|
||||
cache_handler: Handles caching for the crew's operations.
|
||||
id: A unique identifier for the crew instance.
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
tasks: List[Task] = Field(default_factory=list)
|
||||
agents: List[Agent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
verbose: Union[int, bool] = Field(default=0)
|
||||
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
|
||||
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(default=CacheHandler())
|
||||
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
"""Prevent manual setting of the 'id' field by users."""
|
||||
if v:
|
||||
raise PydanticCustomError(
|
||||
"may_not_set_field", "The 'id' field cannot be set by the user.", {}
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@field_validator("config", mode="before")
|
||||
def check_config_type(cls, v: Union[Json, Dict[str, Any]]):
|
||||
return json.loads(v) if isinstance(v, Json) else v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_config(self):
|
||||
"""Validates that the crew is properly configured with agents and tasks."""
|
||||
if not self.config and not self.tasks and not self.agents:
|
||||
raise PydanticCustomError(
|
||||
"missing_keys",
|
||||
"Either 'agents' and 'tasks' need to be set or 'config'.",
|
||||
{},
|
||||
)
|
||||
|
||||
if self.config:
|
||||
self._setup_from_config()
|
||||
|
||||
if self.agents:
|
||||
for agent in self.agents:
|
||||
agent.set_cache_handler(self.cache_handler)
|
||||
return self
|
||||
|
||||
def _setup_from_config(self):
|
||||
"""Initializes agents and tasks from the provided config."""
|
||||
if not self.config.get("agents") or not self.config.get("tasks"):
|
||||
raise PydanticCustomError(
|
||||
"missing_keys_in_config", "Config should have 'agents' and 'tasks'.", {}
|
||||
)
|
||||
|
||||
self.agents = [Agent(**agent) for agent in self.config["agents"]]
|
||||
self.tasks = [self._create_task(task) for task in self.config["tasks"]]
|
||||
|
||||
def _create_task(self, task_config):
|
||||
"""Creates a task instance from its configuration."""
|
||||
task_agent = next(
|
||||
agt for agt in self.agents if agt.role == task_config["agent"]
|
||||
)
|
||||
del task_config["agent"]
|
||||
return Task(**task_config, agent=task_agent)
|
||||
|
||||
def kickoff(self) -> str:
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
for agent in self.agents:
|
||||
agent.cache_handler = self.cache_handler
|
||||
|
||||
if self.process == Process.sequential:
|
||||
return self._sequential_loop()
|
||||
|
||||
def _sequential_loop(self) -> str:
|
||||
"""Executes tasks sequentially and returns the final output."""
|
||||
task_output = None
|
||||
for task in self.tasks:
|
||||
self._prepare_and_execute_task(task)
|
||||
task_output = task.execute(task_output)
|
||||
self._log(
|
||||
"debug", f"\n\n[{task.agent.role}] Task output: {task_output}\n\n"
|
||||
)
|
||||
return task_output
|
||||
|
||||
def _prepare_and_execute_task(self, task):
|
||||
"""Prepares and logs information about the task being executed."""
|
||||
if task.agent.allow_delegation:
|
||||
task.tools += AgentTools(agents=self.agents).tools()
|
||||
|
||||
self._log("debug", f"Working Agent: {task.agent.role}")
|
||||
self._log("info", f"Starting Task: {task.description}")
|
||||
|
||||
def _log(self, level, message):
|
||||
"""Logs a message at the specified verbosity level."""
|
||||
level_map = {"debug": 1, "info": 2}
|
||||
verbose_level = (
|
||||
2 if isinstance(self.verbose, bool) and self.verbose else self.verbose
|
||||
)
|
||||
if verbose_level and level_map[level] <= verbose_level:
|
||||
print(message)
|
||||
11
src/crewai/process.py
Normal file
11
src/crewai/process.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class Process(str, Enum):
|
||||
"""
|
||||
Class representing the different processes that can be used to tackle tasks
|
||||
"""
|
||||
|
||||
sequential = "sequential"
|
||||
# TODO: consensual = 'consensual'
|
||||
# TODO: hierarchical = 'hierarchical'
|
||||
57
src/crewai/prompts.py
Normal file
57
src/crewai/prompts.py
Normal file
@@ -0,0 +1,57 @@
|
||||
import json
|
||||
import os
|
||||
from typing import ClassVar, Dict, Optional
|
||||
|
||||
from langchain.prompts import PromptTemplate
|
||||
from pydantic import BaseModel, Field, PrivateAttr, ValidationError, model_validator
|
||||
|
||||
|
||||
class Prompts(BaseModel):
|
||||
"""Manages and generates prompts for a generic agent with support for different languages."""
|
||||
|
||||
_prompts: Optional[Dict[str, str]] = PrivateAttr()
|
||||
language: Optional[str] = Field(
|
||||
default="en",
|
||||
description="Language of the prompts.",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def load_prompts(self) -> "Prompts":
|
||||
"""Load prompts from a JSON file based on the specified language."""
|
||||
try:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
prompts_path = os.path.join(dir_path, f"prompts/{self.language}.json")
|
||||
|
||||
with open(prompts_path, "r") as f:
|
||||
self._prompts = json.load(f)["slices"]
|
||||
except FileNotFoundError:
|
||||
raise ValidationError(
|
||||
f"Prompt file for language '{self.language}' not found."
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
raise ValidationError(f"Error decoding JSON from the prompts file.")
|
||||
return self
|
||||
|
||||
SCRATCHPAD_SLICE: ClassVar[str] = "\n{agent_scratchpad}"
|
||||
|
||||
def task_execution_with_memory(self) -> str:
|
||||
"""Generate a prompt for task execution with memory components."""
|
||||
return self._build_prompt(["role_playing", "tools", "memory", "task"])
|
||||
|
||||
def task_execution_without_tools(self) -> str:
|
||||
"""Generate a prompt for task execution without tools components."""
|
||||
return self._build_prompt(["role_playing", "task"])
|
||||
|
||||
def task_execution(self) -> str:
|
||||
"""Generate a standard prompt for task execution."""
|
||||
return self._build_prompt(["role_playing", "tools", "task"])
|
||||
|
||||
def _build_prompt(self, components: [str]) -> str:
|
||||
"""Constructs a prompt string from specified components."""
|
||||
prompt_parts = [
|
||||
self._prompts[component]
|
||||
for component in components
|
||||
if component in self._prompts
|
||||
]
|
||||
prompt_parts.append(self.SCRATCHPAD_SLICE)
|
||||
return PromptTemplate.from_template("".join(prompt_parts))
|
||||
8
src/crewai/prompts/en.json
Normal file
8
src/crewai/prompts/en.json
Normal file
@@ -0,0 +1,8 @@
|
||||
{
|
||||
"slices": {
|
||||
"task": "Begin! This is VERY important to you, your job depends on it!\n\nCurrent Task: {input}",
|
||||
"memory": "This is the summary of your work so far:\n{chat_history}",
|
||||
"role_playing": "You are {role}.\n{backstory}\n\nYour personal goal is: {goal}",
|
||||
"tools": "TOOLS:\n------\nYou have access to the following tools:\n\n{tools}\n\nTo use a tool, please use the exact following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}], just the name.\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response for your task, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to use a tool? No\nFinal Answer: [your response here]"
|
||||
}
|
||||
}
|
||||
61
src/crewai/task.py
Normal file
61
src/crewai/task.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import uuid
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
|
||||
|
||||
class Task(BaseModel):
|
||||
"""Class that represent a task to be executed."""
|
||||
|
||||
__hash__ = object.__hash__
|
||||
description: str = Field(description="Description of the actual task.")
|
||||
agent: Optional[Agent] = Field(
|
||||
description="Agent responsible for the task.", default=None
|
||||
)
|
||||
tools: List[Any] = Field(
|
||||
default_factory=list,
|
||||
description="Tools the agent are limited to use for this task.",
|
||||
)
|
||||
output: Optional[TaskOutput] = Field(
|
||||
description="Task output, it's final result.", default=None
|
||||
)
|
||||
id: UUID4 = Field(
|
||||
default_factory=uuid.uuid4,
|
||||
frozen=True,
|
||||
description="Unique identifier for the object, not set by user.",
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
if v:
|
||||
raise PydanticCustomError(
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_tools(self):
|
||||
if not self.tools and (self.agent and self.agent.tools):
|
||||
self.tools.extend(self.agent.tools)
|
||||
return self
|
||||
|
||||
def execute(self, context: str = None) -> str:
|
||||
"""Execute the task.
|
||||
|
||||
Returns:
|
||||
Output of the task.
|
||||
"""
|
||||
if not self.agent:
|
||||
raise Exception(
|
||||
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, either consensual or hierarchical."
|
||||
)
|
||||
result = self.agent.execute_task(
|
||||
task=self.description, context=context, tools=self.tools
|
||||
)
|
||||
|
||||
self.output = TaskOutput(description=self.description, result=result)
|
||||
return result
|
||||
0
src/crewai/tasks/__init__.py
Normal file
0
src/crewai/tasks/__init__.py
Normal file
17
src/crewai/tasks/task_output.py
Normal file
17
src/crewai/tasks/task_output.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
|
||||
class TaskOutput(BaseModel):
|
||||
"""Class that represents the result of a task."""
|
||||
|
||||
description: str = Field(description="Description of the task")
|
||||
summary: Optional[str] = Field(description="Summary of the task", default=None)
|
||||
result: str = Field(description="Result of the task")
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_summary(self):
|
||||
excerpt = " ".join(self.description.split(" ")[:10])
|
||||
self.summary = f"{excerpt}..."
|
||||
return self
|
||||
0
src/crewai/tools/__init__.py
Normal file
0
src/crewai/tools/__init__.py
Normal file
75
src/crewai/tools/agent_tools.py
Normal file
75
src/crewai/tools/agent_tools.py
Normal file
@@ -0,0 +1,75 @@
|
||||
from textwrap import dedent
|
||||
from typing import List
|
||||
|
||||
from langchain.tools import Tool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent
|
||||
|
||||
|
||||
class AgentTools(BaseModel):
|
||||
"""Default tools around agent delegation"""
|
||||
|
||||
agents: List[Agent] = Field(description="List of agents in this crew.")
|
||||
|
||||
def tools(self):
|
||||
return [
|
||||
Tool.from_function(
|
||||
func=self.delegate_work,
|
||||
name="Delegate work to co-worker",
|
||||
description=dedent(
|
||||
f"""\
|
||||
Useful to delegate a specific task to one of the
|
||||
following co-workers: [{', '.join([agent.role for agent in self.agents])}].
|
||||
The input to this tool should be a pipe (|) separated text of length
|
||||
three, representing the co-worker you want to ask it to (one of the options),
|
||||
the task and all actual context you have for the task.
|
||||
For example, `coworker|task|context`.
|
||||
"""
|
||||
),
|
||||
),
|
||||
Tool.from_function(
|
||||
func=self.ask_question,
|
||||
name="Ask question to co-worker",
|
||||
description=dedent(
|
||||
f"""\
|
||||
Useful to ask a question, opinion or take from on
|
||||
of the following co-workers: [{', '.join([agent.role for agent in self.agents])}].
|
||||
The input to this tool should be a pipe (|) separated text of length
|
||||
three, representing the co-worker you want to ask it to (one of the options),
|
||||
the question and all actual context you have for the question.
|
||||
For example, `coworker|question|context`.
|
||||
"""
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
def delegate_work(self, command):
|
||||
"""Useful to delegate a specific task to a coworker."""
|
||||
return self.__execute(command)
|
||||
|
||||
def ask_question(self, command):
|
||||
"""Useful to ask a question, opinion or take from a coworker."""
|
||||
return self.__execute(command)
|
||||
|
||||
def __execute(self, command):
|
||||
"""Execute the command."""
|
||||
try:
|
||||
agent, task, context = command.split("|")
|
||||
except ValueError:
|
||||
return "\nError executing tool. Missing exact 3 pipe (|) separated values. For example, `coworker|task|context`. I need to make sure to pass context as context\n"
|
||||
|
||||
if not agent or not task or not context:
|
||||
return "\nError executing tool. Missing exact 3 pipe (|) separated values. For example, `coworker|task|context`. I need to make sure to pass context as context.\n"
|
||||
|
||||
agent = [
|
||||
available_agent
|
||||
for available_agent in self.agents
|
||||
if available_agent.role == agent
|
||||
]
|
||||
|
||||
if not agent:
|
||||
return f"\nError executing tool. Co-worker mentioned on the Action Input not found, it must to be one of the following options: {', '.join([agent.role for agent in self.agents])}.\n"
|
||||
|
||||
agent = agent[0]
|
||||
return agent.execute_task(task, context)
|
||||
28
src/crewai/tools/cache_tools.py
Normal file
28
src/crewai/tools/cache_tools.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from langchain.tools import Tool
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai.agents.cache import CacheHandler
|
||||
|
||||
|
||||
class CacheTools(BaseModel):
|
||||
"""Default tools to hit the cache."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
name: str = "Hit Cache"
|
||||
cache_handler: CacheHandler = Field(
|
||||
description="Cache Handler for the crew",
|
||||
default=CacheHandler(),
|
||||
)
|
||||
|
||||
def tool(self):
|
||||
return Tool.from_function(
|
||||
func=self.hit_cache,
|
||||
name=self.name,
|
||||
description="Reads directly from the cache",
|
||||
)
|
||||
|
||||
def hit_cache(self, key):
|
||||
split = key.split("tool:")
|
||||
tool = split[1].split("|input:")[0].strip()
|
||||
tool_input = split[1].split("|input:")[1].strip()
|
||||
return self.cache_handler.read(tool, tool_input)
|
||||
Reference in New Issue
Block a user