Add thinking_budget parameter support for Gemini models

- Add thinking_budget parameter to LLM class constructor with validation
- Pass thinking_budget to litellm as thinking={'budget_tokens': value}
- Add comprehensive tests for validation and parameter passing
- Resolves issue #3299

Co-Authored-By: João <joao@crewai.com>
This commit is contained in:
Devin AI
2025-08-09 10:15:57 +00:00
parent 251ae00b8b
commit d0c5120b32
2 changed files with 65 additions and 0 deletions

View File

@@ -313,6 +313,7 @@ class LLM(BaseLLM):
api_key: Optional[str] = None, api_key: Optional[str] = None,
callbacks: List[Any] = [], callbacks: List[Any] = [],
reasoning_effort: Optional[Literal["none", "low", "medium", "high"]] = None, reasoning_effort: Optional[Literal["none", "low", "medium", "high"]] = None,
thinking_budget: Optional[int] = None,
stream: bool = False, stream: bool = False,
**kwargs, **kwargs,
): ):
@@ -337,10 +338,14 @@ class LLM(BaseLLM):
self.callbacks = callbacks self.callbacks = callbacks
self.context_window_size = 0 self.context_window_size = 0
self.reasoning_effort = reasoning_effort self.reasoning_effort = reasoning_effort
self.thinking_budget = thinking_budget
self.additional_params = kwargs self.additional_params = kwargs
self.is_anthropic = self._is_anthropic_model(model) self.is_anthropic = self._is_anthropic_model(model)
self.stream = stream self.stream = stream
if self.thinking_budget is not None and (not isinstance(self.thinking_budget, int) or self.thinking_budget <= 0):
raise ValueError("thinking_budget must be a positive integer")
litellm.drop_params = True litellm.drop_params = True
# Normalize self.stop to always be a List[str] # Normalize self.stop to always be a List[str]
@@ -414,6 +419,9 @@ class LLM(BaseLLM):
**self.additional_params, **self.additional_params,
} }
if self.thinking_budget is not None:
params["thinking"] = {"budget_tokens": self.thinking_budget}
# Remove None values from params # Remove None values from params
return {k: v for k, v in params.items() if v is not None} return {k: v for k, v in params.items() if v is not None}

View File

@@ -354,6 +354,63 @@ def test_context_window_validation():
assert "must be between 1024 and 2097152" in str(excinfo.value) assert "must be between 1024 and 2097152" in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"], filter_query_parameters=["key"])
def test_gemini_thinking_budget():
llm = LLM(
model="gemini/gemini-2.0-flash-thinking-exp-01-21",
thinking_budget=1024,
)
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
def test_thinking_budget_validation():
# Test valid thinking_budget
llm = LLM(model="gemini/gemini-2.0-flash-thinking-exp-01-21", thinking_budget=1024)
assert llm.thinking_budget == 1024
# Test invalid thinking_budget (negative)
with pytest.raises(ValueError, match="thinking_budget must be a positive integer"):
LLM(model="gemini/gemini-2.0-flash-thinking-exp-01-21", thinking_budget=-1)
# Test invalid thinking_budget (zero)
with pytest.raises(ValueError, match="thinking_budget must be a positive integer"):
LLM(model="gemini/gemini-2.0-flash-thinking-exp-01-21", thinking_budget=0)
# Test invalid thinking_budget (non-integer)
with pytest.raises(ValueError, match="thinking_budget must be a positive integer"):
LLM(model="gemini/gemini-2.0-flash-thinking-exp-01-21", thinking_budget=1024.5)
def test_thinking_budget_parameter_passing():
llm = LLM(
model="gemini/gemini-2.0-flash-thinking-exp-01-21",
thinking_budget=2048,
)
with patch("litellm.completion") as mocked_completion:
mock_message = MagicMock()
mock_message.content = "Test response"
mock_choice = MagicMock()
mock_choice.message = mock_message
mock_response = MagicMock()
mock_response.choices = [mock_choice]
mock_response.usage = {
"prompt_tokens": 5,
"completion_tokens": 5,
"total_tokens": 10,
}
mocked_completion.return_value = mock_response
result = llm.call("Test message")
_, kwargs = mocked_completion.call_args
assert "thinking" in kwargs
assert kwargs["thinking"]["budget_tokens"] == 2048
assert result == "Test response"
@pytest.fixture @pytest.fixture
def get_weather_tool_schema(): def get_weather_tool_schema():
return { return {