From d092da068741d8d36c9e35bbc4d33a98405505b3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jo=C3=A3o=20Moura?= Date: Sun, 9 Feb 2025 16:45:35 -0300 Subject: [PATCH] Update memory.mdx --- docs/concepts/memory.mdx | 51 +++++++++++++++++++++++----------------- 1 file changed, 29 insertions(+), 22 deletions(-) diff --git a/docs/concepts/memory.mdx b/docs/concepts/memory.mdx index 00e9f9c42..7d4a391cf 100644 --- a/docs/concepts/memory.mdx +++ b/docs/concepts/memory.mdx @@ -60,40 +60,47 @@ my_crew = Crew( ```python Code from crewai import Crew, Process from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory -from crewai.memory.storage import LTMSQLiteStorage, CustomRAGStorage +from crewai.memory.storage import LTMSQLiteStorage, RAGStorage from typing import List, Optional # Assemble your crew with memory capabilities my_crew: Crew = Crew( - agents: List = [...], - tasks: List = [...], - process: str = Process.sequential, - memory: bool = True, + agents = [...], + tasks = [...], + process = Process.sequential, + memory = True, # Long-term memory for persistent storage across sessions - long_term_memory: Optional[LongTermMemory] = LongTermMemory( + long_term_memory = LongTermMemory( storage=LTMSQLiteStorage( - db_path="${CREWAI_STORAGE_DIR}/my_crew1/long_term_memory_storage.db" + db_path="/my_crew1/long_term_memory_storage.db" ) ), # Short-term memory for current context using RAG - short_term_memory: Optional[ShortTermMemory] = ShortTermMemory( - storage=CustomRAGStorage( - crew_name="my_crew", - storage_type="short_term", - data_dir="${CREWAI_STORAGE_DIR}", - model=embedder["model"], - dimension=embedder["dimension"], + short_term_memory = ShortTermMemory( + storage = RAGStorage( + embedder_config={ + "provider": "openai", + "config": { + "model": 'text-embedding-3-small' + } + }, + type="short_term", + path="/my_crew1/" + ) ), ), # Entity memory for tracking key information about entities - entity_memory: Optional[EntityMemory] = EntityMemory( - storage=CustomRAGStorage( - crew_name="my_crew", - storage_type="entities", - data_dir="${CREWAI_STORAGE_DIR}", - model=embedder["model"], - dimension=embedder["dimension"], - ), + entity_memory = EntityMemory( + storage=RAGStorage( + embedder_config={ + "provider": "openai", + "config": { + "model": 'text-embedding-3-small' + } + }, + type="short_term", + path="/my_crew1/" + ) ), verbose=True, )