update docs

This commit is contained in:
Brandon Hancock
2025-02-04 12:41:02 -05:00
parent 47b3d8f3fa
commit ce6ffb1570

View File

@@ -693,6 +693,30 @@ Learn how to get the most out of your LLM configuration:
</Accordion>
</AccordionGroup>
## Structured LLM Calls
CrewAI supports structured responses from LLM calls by allowing you to define a `response_format` using a Pydantic model. This enables the framework to automatically parse and validate the output, making it easier to integrate the response into your application without manual post-processing.
For example, you can define a Pydantic model to represent the expected response structure and pass it as the `response_format` when instantiating the LLM. The model will then be used to convert the LLM output into a structured Python object.
```python Code
from crewai import LLM
class Dog(BaseModel):
name: str
age: int
breed: str
llm = LLM(model="gpt-4o", response_format=Dog)
response = llm.call(
"Analyze the following messages and return the name, age, and breed. "
"Meet Kona! She is 3 years old and is a black german shepherd."
)
print(response)
```
## Common Issues and Solutions
<Tabs>