mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
updating agente with long term memory
This commit is contained in:
@@ -8,13 +8,19 @@ from langchain.agents import AgentExecutor
|
||||
from langchain.chat_models import ChatOpenAI as OpenAI
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain.agents.format_scratchpad import format_log_to_str
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser, PydanticOutputParser
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain.memory import (
|
||||
ConversationSummaryMemory,
|
||||
ConversationEntityMemory,
|
||||
CombinedMemory
|
||||
)
|
||||
|
||||
from .prompts import Prompts
|
||||
from .agent.agent_vote import AgentVote
|
||||
from .agents.agent_vote import AgentVote
|
||||
|
||||
class Agent(BaseModel):
|
||||
"""Generic agent implementation."""
|
||||
agent_executor: AgentExecutor = None
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
@@ -27,32 +33,43 @@ class Agent(BaseModel):
|
||||
default=Prompts
|
||||
)
|
||||
llm: str = Field(
|
||||
description="LLM of the agent",
|
||||
description="LLM that will run the agent",
|
||||
default=OpenAI(
|
||||
temperature=0.7,
|
||||
model="gpt-4",
|
||||
verbose=True
|
||||
)
|
||||
)
|
||||
|
||||
def vote_agent_for_task(self, task: str) -> AgentVote:
|
||||
"""
|
||||
Execute a task with the agent.
|
||||
Parameters:
|
||||
task (str): Task to execute
|
||||
Returns:
|
||||
output (AgentVote): The agent voted to execute the task
|
||||
"""
|
||||
parser = PydanticOutputParser(pydantic_object=AgentVote)
|
||||
prompt = Prompts.AGENT_EXECUTION_PROMPT.partial(
|
||||
tools=render_text_description(self.tools),
|
||||
tool_names=self.__tools_names(),
|
||||
backstory=self.backstory,
|
||||
role=self.role,
|
||||
|
||||
def __init__(self, **data):
|
||||
super().__init__(**data)
|
||||
execution_prompt = Prompts.TASK_EXECUTION_PROMPT.partial(
|
||||
goal=self.goal,
|
||||
format_instructions=parser.get_format_instructions()
|
||||
role=self.role,
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
llm_with_bind = self.llm.bind(stop=["\nObservation"])
|
||||
inner_agent = {
|
||||
"input": lambda x: x["input"],
|
||||
"tools": lambda x: x["tools"],
|
||||
"entities": lambda x: x["entities"],
|
||||
"tool_names": lambda x: x["tool_names"],
|
||||
"chat_history": lambda x: x["chat_history"],
|
||||
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps']),
|
||||
} | execution_prompt | llm_with_bind | ReActSingleInputOutputParser()
|
||||
|
||||
summary_memory = ConversationSummaryMemory(llm=self.llm, memory_key='chat_history', input_key="input")
|
||||
entity_memory = ConversationEntityMemory(llm=self.llm, input_key="input")
|
||||
memory = CombinedMemory(memories=[entity_memory, summary_memory])
|
||||
|
||||
self.agent_executor = AgentExecutor(
|
||||
agent=inner_agent,
|
||||
tools=self.tools,
|
||||
memory=memory,
|
||||
verbose=True,
|
||||
handle_parsing_errors=True
|
||||
)
|
||||
return self.__function_calling(task, prompt, parser)
|
||||
|
||||
def execute_task(self, task: str) -> str:
|
||||
"""
|
||||
@@ -62,41 +79,11 @@ class Agent(BaseModel):
|
||||
Returns:
|
||||
output (str): Output of the agent
|
||||
"""
|
||||
prompt = Prompts.AGENT_EXECUTION_PROMPT.partial(
|
||||
tools=render_text_description(self.tools),
|
||||
tool_names=self.__tools_names(),
|
||||
backstory=self.backstory,
|
||||
role=self.role,
|
||||
goal=self.goal,
|
||||
)
|
||||
return self.__execute_task(task, prompt)
|
||||
|
||||
def __function_calling(self, input: str, prompt: str, parser: str) -> str:
|
||||
inner_agent = {
|
||||
"input": lambda x: x["input"],
|
||||
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
|
||||
} | prompt | parser
|
||||
|
||||
return self.__execute(inner_agent, input)
|
||||
|
||||
def __execute_task(self, input: str, prompt: str) -> str:
|
||||
chat_with_bind = self.llm.bind(stop=["\nObservation"])
|
||||
inner_agent = {
|
||||
"input": lambda x: x["input"],
|
||||
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
|
||||
} | prompt | chat_with_bind | ReActSingleInputOutputParser()
|
||||
|
||||
return self.__execute(inner_agent, input)
|
||||
|
||||
def __execute(self, inner_agent, input):
|
||||
agent_executor = AgentExecutor(
|
||||
agent=inner_agent,
|
||||
tools=self.tools,
|
||||
verbose=True,
|
||||
handle_parsing_errors=True
|
||||
)
|
||||
return agent_executor.invoke({"input": input})['output']
|
||||
return self.agent_executor.invoke({
|
||||
"input": task,
|
||||
"tool_names": self.__tools_names(),
|
||||
"tools": render_text_description(self.tools),
|
||||
})['output']
|
||||
|
||||
def __tools_names(self) -> str:
|
||||
return ", ".join([t.name for t in self.tools])
|
||||
|
||||
return ", ".join([t.name for t in self.tools])
|
||||
Reference in New Issue
Block a user