Hierarchical process (#206)

* Hierarchical process +  Docs
Co-authored-by: João Moura <joaomdmoura@gmail.com>
This commit is contained in:
Gui Vieira
2024-02-02 13:56:35 -03:00
committed by GitHub
parent 8fc0f33dd5
commit c78237cb86
12 changed files with 1358 additions and 74 deletions

View File

@@ -1,5 +1,7 @@
"""Test Agent creation and execution basic functionality."""
from unittest.mock import MagicMock, patch
from crewai.agent import Agent
from crewai.task import Task
@@ -27,7 +29,7 @@ def test_task_tool_reflect_agent_tools():
assert task.tools == [fake_tool]
def test_task_tool_takes_precedence_ove_agent_tools():
def test_task_tool_takes_precedence_over_agent_tools():
from langchain.tools import tool
@tool
@@ -47,7 +49,7 @@ def test_task_tool_takes_precedence_ove_agent_tools():
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
agent=researcher,
tools=[fake_task_tool],
)
@@ -69,8 +71,6 @@ def test_task_prompt_includes_expected_output():
agent=researcher,
)
from unittest.mock import patch
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute()
@@ -78,8 +78,6 @@ def test_task_prompt_includes_expected_output():
def test_task_callback():
from unittest.mock import MagicMock
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
@@ -94,12 +92,27 @@ def test_task_callback():
expected_output="Bullet point list of 5 interesting ideas.",
agent=researcher,
callback=task_completed,
allow_delegation=False,
)
from unittest.mock import patch
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute()
task_completed.assert_called_once_with(task.output)
def test_execute_with_agent():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
)
with patch.object(Agent, "execute_task", return_value="ok") as execute:
task.execute(agent=researcher)
execute.assert_called_once_with(task=task._prompt(), context=None, tools=[])