feat: Add LLM call events for improved observability (#2214)

* feat: Add LLM call events for improved observability

- Introduce new LLM call events: LLMCallStartedEvent, LLMCallCompletedEvent, and LLMCallFailedEvent
- Emit events for LLM calls and tool calls to provide better tracking and debugging
- Add event handling in the LLM class to track call lifecycle
- Update event bus to support new LLM-related events
- Add test cases to validate LLM event emissions

* feat: Add event handling for LLM call lifecycle events

- Implement event listeners for LLM call events in EventListener
- Add logging for LLM call start, completion, and failure events
- Import and register new LLM-specific event types

* less log

* refactor: Update LLM event response type to support Any

* refactor: Simplify LLM call completed event emission

Remove unnecessary LLMCallType conversion when emitting LLMCallCompletedEvent

* refactor: Update LLM event docstrings for clarity

Improve docstrings for LLM call events to more accurately describe their purpose and lifecycle

* feat: Add LLMCallFailedEvent emission for tool execution errors

Enhance error handling by emitting a specific event when tool execution fails during LLM calls
This commit is contained in:
Lorenze Jay
2025-02-24 12:17:44 -08:00
committed by GitHub
parent 78797c64b0
commit c62fb615b1
8 changed files with 365 additions and 4 deletions

View File

@@ -21,6 +21,12 @@ from typing import (
from dotenv import load_dotenv
from pydantic import BaseModel
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
with warnings.catch_warnings():
@@ -259,6 +265,15 @@ class LLM:
>>> print(response)
"The capital of France is Paris."
"""
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
),
)
# Validate parameters before proceeding with the call.
self._validate_call_params()
@@ -333,12 +348,13 @@ class LLM:
# --- 4) If no tool calls, return the text response
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
# --- 5) Handle the tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
print("function_name", function_name)
if function_name in available_functions:
try:
function_args = json.loads(tool_call.function.arguments)
@@ -350,6 +366,7 @@ class LLM:
try:
# Call the actual tool function
result = fn(**function_args)
self._handle_emit_call_events(result, LLMCallType.TOOL_CALL)
return result
except Exception as e:
@@ -365,6 +382,12 @@ class LLM:
error=str(e),
),
)
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(
error=f"Tool execution error: {str(e)}"
),
)
return text_response
else:
@@ -374,12 +397,28 @@ class LLM:
return text_response
except Exception as e:
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
"""Handle the events for the LLM call.
Args:
response (str): The response from the LLM call.
call_type (str): The type of call, either "tool_call" or "llm_call".
"""
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
)
def _format_messages_for_provider(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]: