adding agent vote

This commit is contained in:
Joao Moura
2023-11-05 16:21:22 -03:00
parent 15d4871b52
commit c4f86a60bb
2 changed files with 47 additions and 6 deletions

View File

@@ -8,9 +8,10 @@ from langchain.agents import AgentExecutor
from langchain.chat_models import ChatOpenAI as OpenAI
from langchain.tools.render import render_text_description
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from langchain.agents.output_parsers import ReActSingleInputOutputParser, PydanticOutputParser
from .prompts import Prompts
from .agent.agent_vote import AgentVote
class Agent(BaseModel):
"""Generic agent implementation."""
@@ -34,7 +35,26 @@ class Agent(BaseModel):
)
)
def execute(self, task: str) -> str:
def vote_agent_for_task(self, task: str) -> AgentVote:
"""
Execute a task with the agent.
Parameters:
task (str): Task to execute
Returns:
output (AgentVote): The agent voted to execute the task
"""
parser = PydanticOutputParser(pydantic_object=AgentVote)
prompt = Prompts.AGENT_EXECUTION_PROMPT.partial(
tools=render_text_description(self.tools),
tool_names=self.__tools_names(),
backstory=self.backstory,
role=self.role,
goal=self.goal,
format_instructions=parser.get_format_instructions()
)
return self.__function_calling(task, prompt, parser)
def execute_task(self, task: str) -> str:
"""
Execute a task with the agent.
Parameters:
@@ -49,16 +69,32 @@ class Agent(BaseModel):
role=self.role,
goal=self.goal,
)
return self.__run(task, prompt, self.tools)
return self.__execute_task(task, prompt)
def __run(self, input: str, prompt: str, tools: List[Tool]) -> str:
def __function_calling(self, input: str, prompt: str, parser: str) -> str:
inner_agent = {
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
} | prompt | parser
return self.__execute(inner_agent, input)
def __execute_task(self, input: str, prompt: str) -> str:
chat_with_bind = self.llm.bind(stop=["\nObservation"])
agent = {
inner_agent = {
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
} | prompt | chat_with_bind | ReActSingleInputOutputParser()
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
return self.__execute(inner_agent, input)
def __execute(self, inner_agent, input):
agent_executor = AgentExecutor(
agent=inner_agent,
tools=self.tools,
verbose=True,
handle_parsing_errors=True
)
return agent_executor.invoke({"input": input})['output']
def __tools_names(self) -> str:

View File

@@ -0,0 +1,5 @@
from pydantic import BaseModel, Field
class AgentVote(BaseModel):
task: str = Field(description="Task to be executed by the agent")
agent_vote: str = Field(description="Agent that will execute the task")