mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
docs: update changelog dates (#2437)
* docs: update changelog dates * docs: add aws bedrock tools docs * docs: fix incorrect respect_context_window parameter in Crew example
This commit is contained in:
@@ -4,7 +4,7 @@ description: View the latest updates and changes to CrewAI
|
|||||||
icon: timeline
|
icon: timeline
|
||||||
---
|
---
|
||||||
|
|
||||||
<Update label="2024-03-17" description="v0.108.0">
|
<Update label="2025-03-17" description="v0.108.0">
|
||||||
**Features**
|
**Features**
|
||||||
- Converted tabs to spaces in `crew.py` template
|
- Converted tabs to spaces in `crew.py` template
|
||||||
- Enhanced LLM Streaming Response Handling and Event System
|
- Enhanced LLM Streaming Response Handling and Event System
|
||||||
@@ -24,7 +24,7 @@ icon: timeline
|
|||||||
- Added documentation for `ApifyActorsTool`
|
- Added documentation for `ApifyActorsTool`
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2024-03-10" description="v0.105.0">
|
<Update label="2025-03-10" description="v0.105.0">
|
||||||
**Core Improvements & Fixes**
|
**Core Improvements & Fixes**
|
||||||
- Fixed issues with missing template variables and user memory configuration
|
- Fixed issues with missing template variables and user memory configuration
|
||||||
- Improved async flow support and addressed agent response formatting
|
- Improved async flow support and addressed agent response formatting
|
||||||
@@ -45,7 +45,7 @@ icon: timeline
|
|||||||
- Fixed typos in prompts and updated Amazon Bedrock model listings
|
- Fixed typos in prompts and updated Amazon Bedrock model listings
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2024-02-12" description="v0.102.0">
|
<Update label="2025-02-12" description="v0.102.0">
|
||||||
**Core Improvements & Fixes**
|
**Core Improvements & Fixes**
|
||||||
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
|
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
|
||||||
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
|
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
|
||||||
@@ -65,7 +65,7 @@ icon: timeline
|
|||||||
- Fixed Various Typos & Formatting Issues
|
- Fixed Various Typos & Formatting Issues
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2024-01-28" description="v0.100.0">
|
<Update label="2025-01-28" description="v0.100.0">
|
||||||
**Features**
|
**Features**
|
||||||
- Add Composio docs
|
- Add Composio docs
|
||||||
- Add SageMaker as a LLM provider
|
- Add SageMaker as a LLM provider
|
||||||
@@ -80,7 +80,7 @@ icon: timeline
|
|||||||
- Improve formatting and clarity in CLI and Composio Tool docs
|
- Improve formatting and clarity in CLI and Composio Tool docs
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2024-01-20" description="v0.98.0">
|
<Update label="2025-01-20" description="v0.98.0">
|
||||||
**Features**
|
**Features**
|
||||||
- Conversation crew v1
|
- Conversation crew v1
|
||||||
- Add unique ID to flow states
|
- Add unique ID to flow states
|
||||||
@@ -101,7 +101,7 @@ icon: timeline
|
|||||||
- Fixed typos, nested pydantic model issue, and docling issues
|
- Fixed typos, nested pydantic model issue, and docling issues
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2024-01-04" description="v0.95.0">
|
<Update label="2025-01-04" description="v0.95.0">
|
||||||
**New Features**
|
**New Features**
|
||||||
- Adding Multimodal Abilities to Crew
|
- Adding Multimodal Abilities to Crew
|
||||||
- Programatic Guardrails
|
- Programatic Guardrails
|
||||||
@@ -131,7 +131,7 @@ icon: timeline
|
|||||||
- Suppressed userWarnings from litellm pydantic issues
|
- Suppressed userWarnings from litellm pydantic issues
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2023-12-05" description="v0.86.0">
|
<Update label="2024-12-05" description="v0.86.0">
|
||||||
**Changes**
|
**Changes**
|
||||||
- Remove all references to pipeline and pipeline router
|
- Remove all references to pipeline and pipeline router
|
||||||
- Add Nvidia NIM as provider in Custom LLM
|
- Add Nvidia NIM as provider in Custom LLM
|
||||||
@@ -141,7 +141,7 @@ icon: timeline
|
|||||||
- Simplify template crew
|
- Simplify template crew
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2023-12-04" description="v0.85.0">
|
<Update label="2024-12-04" description="v0.85.0">
|
||||||
**Features**
|
**Features**
|
||||||
- Added knowledge to agent level
|
- Added knowledge to agent level
|
||||||
- Feat/remove langchain
|
- Feat/remove langchain
|
||||||
@@ -161,7 +161,7 @@ icon: timeline
|
|||||||
- Improvements to LLM Configuration and Usage
|
- Improvements to LLM Configuration and Usage
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2023-11-25" description="v0.83.0">
|
<Update label="2024-11-25" description="v0.83.0">
|
||||||
**New Features**
|
**New Features**
|
||||||
- New before_kickoff and after_kickoff crew callbacks
|
- New before_kickoff and after_kickoff crew callbacks
|
||||||
- Support to pre-seed agents with Knowledge
|
- Support to pre-seed agents with Knowledge
|
||||||
@@ -178,7 +178,7 @@ icon: timeline
|
|||||||
- Update Docs
|
- Update Docs
|
||||||
</Update>
|
</Update>
|
||||||
|
|
||||||
<Update label="2023-11-13" description="v0.80.0">
|
<Update label="2024-11-13" description="v0.80.0">
|
||||||
**Fixes**
|
**Fixes**
|
||||||
- Fixing Tokens callback replacement bug
|
- Fixing Tokens callback replacement bug
|
||||||
- Fixing Step callback issue
|
- Fixing Step callback issue
|
||||||
|
|||||||
@@ -111,6 +111,8 @@
|
|||||||
"pages": [
|
"pages": [
|
||||||
"tools/aimindtool",
|
"tools/aimindtool",
|
||||||
"tools/apifyactorstool",
|
"tools/apifyactorstool",
|
||||||
|
"tools/bedrockinvokeagenttool",
|
||||||
|
"tools/bedrockkbretriever",
|
||||||
"tools/bravesearchtool",
|
"tools/bravesearchtool",
|
||||||
"tools/browserbaseloadtool",
|
"tools/browserbaseloadtool",
|
||||||
"tools/codedocssearchtool",
|
"tools/codedocssearchtool",
|
||||||
|
|||||||
@@ -39,8 +39,7 @@ analysis_crew = Crew(
|
|||||||
agents=[coding_agent],
|
agents=[coding_agent],
|
||||||
tasks=[data_analysis_task],
|
tasks=[data_analysis_task],
|
||||||
verbose=True,
|
verbose=True,
|
||||||
memory=False,
|
memory=False
|
||||||
respect_context_window=True # enable by default
|
|
||||||
)
|
)
|
||||||
|
|
||||||
datasets = [
|
datasets = [
|
||||||
|
|||||||
187
docs/tools/bedrockinvokeagenttool.mdx
Normal file
187
docs/tools/bedrockinvokeagenttool.mdx
Normal file
@@ -0,0 +1,187 @@
|
|||||||
|
---
|
||||||
|
title: Bedrock Invoke Agent Tool
|
||||||
|
description: Enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows
|
||||||
|
icon: aws
|
||||||
|
---
|
||||||
|
|
||||||
|
# `BedrockInvokeAgentTool`
|
||||||
|
|
||||||
|
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv pip install 'crewai[tools]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- AWS credentials configured (either through environment variables or AWS CLI)
|
||||||
|
- `boto3` and `python-dotenv` packages
|
||||||
|
- Access to Amazon Bedrock Agents
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
Here's how to use the tool with a CrewAI agent:
|
||||||
|
|
||||||
|
```python {2, 4-8}
|
||||||
|
from crewai import Agent, Task, Crew
|
||||||
|
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
|
||||||
|
|
||||||
|
# Initialize the tool
|
||||||
|
agent_tool = BedrockInvokeAgentTool(
|
||||||
|
agent_id="your-agent-id",
|
||||||
|
agent_alias_id="your-agent-alias-id"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a CrewAI agent that uses the tool
|
||||||
|
aws_expert = Agent(
|
||||||
|
role='AWS Service Expert',
|
||||||
|
goal='Help users understand AWS services and quotas',
|
||||||
|
backstory='I am an expert in AWS services and can provide detailed information about them.',
|
||||||
|
tools=[agent_tool],
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a task for the agent
|
||||||
|
quota_task = Task(
|
||||||
|
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
|
||||||
|
agent=aws_expert
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a crew with the agent
|
||||||
|
crew = Crew(
|
||||||
|
agents=[aws_expert],
|
||||||
|
tasks=[quota_task],
|
||||||
|
verbose=2
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the crew
|
||||||
|
result = crew.kickoff()
|
||||||
|
print(result)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Tool Arguments
|
||||||
|
|
||||||
|
| Argument | Type | Required | Default | Description |
|
||||||
|
|:---------|:-----|:---------|:--------|:------------|
|
||||||
|
| **agent_id** | `str` | Yes | None | The unique identifier of the Bedrock agent |
|
||||||
|
| **agent_alias_id** | `str` | Yes | None | The unique identifier of the agent alias |
|
||||||
|
| **session_id** | `str` | No | timestamp | The unique identifier of the session |
|
||||||
|
| **enable_trace** | `bool` | No | False | Whether to enable trace for debugging |
|
||||||
|
| **end_session** | `bool` | No | False | Whether to end the session after invocation |
|
||||||
|
| **description** | `str` | No | None | Custom description for the tool |
|
||||||
|
|
||||||
|
## Environment Variables
|
||||||
|
|
||||||
|
```bash
|
||||||
|
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
|
||||||
|
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
|
||||||
|
AWS_REGION=your-aws-region # Defaults to us-west-2
|
||||||
|
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
|
||||||
|
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
|
||||||
|
```
|
||||||
|
|
||||||
|
## Advanced Usage
|
||||||
|
|
||||||
|
### Multi-Agent Workflow with Session Management
|
||||||
|
|
||||||
|
```python {2, 4-22}
|
||||||
|
from crewai import Agent, Task, Crew, Process
|
||||||
|
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
|
||||||
|
|
||||||
|
# Initialize tools with session management
|
||||||
|
initial_tool = BedrockInvokeAgentTool(
|
||||||
|
agent_id="your-agent-id",
|
||||||
|
agent_alias_id="your-agent-alias-id",
|
||||||
|
session_id="custom-session-id"
|
||||||
|
)
|
||||||
|
|
||||||
|
followup_tool = BedrockInvokeAgentTool(
|
||||||
|
agent_id="your-agent-id",
|
||||||
|
agent_alias_id="your-agent-alias-id",
|
||||||
|
session_id="custom-session-id"
|
||||||
|
)
|
||||||
|
|
||||||
|
final_tool = BedrockInvokeAgentTool(
|
||||||
|
agent_id="your-agent-id",
|
||||||
|
agent_alias_id="your-agent-alias-id",
|
||||||
|
session_id="custom-session-id",
|
||||||
|
end_session=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create agents for different stages
|
||||||
|
researcher = Agent(
|
||||||
|
role='AWS Service Researcher',
|
||||||
|
goal='Gather information about AWS services',
|
||||||
|
backstory='I am specialized in finding detailed AWS service information.',
|
||||||
|
tools=[initial_tool]
|
||||||
|
)
|
||||||
|
|
||||||
|
analyst = Agent(
|
||||||
|
role='Service Compatibility Analyst',
|
||||||
|
goal='Analyze service compatibility and requirements',
|
||||||
|
backstory='I analyze AWS services for compatibility and integration possibilities.',
|
||||||
|
tools=[followup_tool]
|
||||||
|
)
|
||||||
|
|
||||||
|
summarizer = Agent(
|
||||||
|
role='Technical Documentation Writer',
|
||||||
|
goal='Create clear technical summaries',
|
||||||
|
backstory='I specialize in creating clear, concise technical documentation.',
|
||||||
|
tools=[final_tool]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create tasks
|
||||||
|
research_task = Task(
|
||||||
|
description="Find all available AWS services in us-west-2 region.",
|
||||||
|
agent=researcher
|
||||||
|
)
|
||||||
|
|
||||||
|
analysis_task = Task(
|
||||||
|
description="Analyze which services support IPv6 and their implementation requirements.",
|
||||||
|
agent=analyst
|
||||||
|
)
|
||||||
|
|
||||||
|
summary_task = Task(
|
||||||
|
description="Create a summary of IPv6-compatible services and their key features.",
|
||||||
|
agent=summarizer
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a crew with the agents and tasks
|
||||||
|
crew = Crew(
|
||||||
|
agents=[researcher, analyst, summarizer],
|
||||||
|
tasks=[research_task, analysis_task, summary_task],
|
||||||
|
process=Process.sequential,
|
||||||
|
verbose=2
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the crew
|
||||||
|
result = crew.kickoff()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Use Cases
|
||||||
|
|
||||||
|
### Hybrid Multi-Agent Collaborations
|
||||||
|
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
|
||||||
|
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
|
||||||
|
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
|
||||||
|
|
||||||
|
### Data Sovereignty and Compliance
|
||||||
|
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
|
||||||
|
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
|
||||||
|
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
|
||||||
|
|
||||||
|
### Seamless AWS Service Integration
|
||||||
|
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
|
||||||
|
- Enable CrewAI agents to interact with AWS services through natural language requests
|
||||||
|
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
|
||||||
|
|
||||||
|
### Scalable Hybrid Agent Architectures
|
||||||
|
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
|
||||||
|
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
|
||||||
|
|
||||||
|
### Cross-Organizational Agent Collaboration
|
||||||
|
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
|
||||||
|
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
|
||||||
|
- Build agent ecosystems that span organizational boundaries while maintaining security and data control
|
||||||
165
docs/tools/bedrockkbretriever.mdx
Normal file
165
docs/tools/bedrockkbretriever.mdx
Normal file
@@ -0,0 +1,165 @@
|
|||||||
|
---
|
||||||
|
title: 'Bedrock Knowledge Base Retriever'
|
||||||
|
description: 'Retrieve information from Amazon Bedrock Knowledge Bases using natural language queries'
|
||||||
|
icon: aws
|
||||||
|
---
|
||||||
|
|
||||||
|
# `BedrockKBRetrieverTool`
|
||||||
|
|
||||||
|
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv pip install 'crewai[tools]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- AWS credentials configured (either through environment variables or AWS CLI)
|
||||||
|
- `boto3` and `python-dotenv` packages
|
||||||
|
- Access to Amazon Bedrock Knowledge Base
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
Here's how to use the tool with a CrewAI agent:
|
||||||
|
|
||||||
|
```python {2, 4-17}
|
||||||
|
from crewai import Agent, Task, Crew
|
||||||
|
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
|
||||||
|
|
||||||
|
# Initialize the tool
|
||||||
|
kb_tool = BedrockKBRetrieverTool(
|
||||||
|
knowledge_base_id="your-kb-id",
|
||||||
|
number_of_results=5
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a CrewAI agent that uses the tool
|
||||||
|
researcher = Agent(
|
||||||
|
role='Knowledge Base Researcher',
|
||||||
|
goal='Find information about company policies',
|
||||||
|
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
|
||||||
|
tools=[kb_tool],
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a task for the agent
|
||||||
|
research_task = Task(
|
||||||
|
description="Find our company's remote work policy and summarize the key points.",
|
||||||
|
agent=researcher
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a crew with the agent
|
||||||
|
crew = Crew(
|
||||||
|
agents=[researcher],
|
||||||
|
tasks=[research_task],
|
||||||
|
verbose=2
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the crew
|
||||||
|
result = crew.kickoff()
|
||||||
|
print(result)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Tool Arguments
|
||||||
|
|
||||||
|
| Argument | Type | Required | Default | Description |
|
||||||
|
|:---------|:-----|:---------|:---------|:-------------|
|
||||||
|
| **knowledge_base_id** | `str` | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
|
||||||
|
| **number_of_results** | `int` | No | 5 | Maximum number of results to return |
|
||||||
|
| **retrieval_configuration** | `dict` | No | None | Custom configurations for the knowledge base query |
|
||||||
|
| **guardrail_configuration** | `dict` | No | None | Content filtering settings |
|
||||||
|
| **next_token** | `str` | No | None | Token for pagination |
|
||||||
|
|
||||||
|
## Environment Variables
|
||||||
|
|
||||||
|
```bash
|
||||||
|
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
|
||||||
|
AWS_REGION=your-aws-region # Defaults to us-east-1
|
||||||
|
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
|
||||||
|
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
|
||||||
|
```
|
||||||
|
|
||||||
|
## Response Format
|
||||||
|
|
||||||
|
The tool returns results in JSON format:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"results": [
|
||||||
|
{
|
||||||
|
"content": "Retrieved text content",
|
||||||
|
"content_type": "text",
|
||||||
|
"source_type": "S3",
|
||||||
|
"source_uri": "s3://bucket/document.pdf",
|
||||||
|
"score": 0.95,
|
||||||
|
"metadata": {
|
||||||
|
"additional": "metadata"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"nextToken": "pagination-token",
|
||||||
|
"guardrailAction": "NONE"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Advanced Usage
|
||||||
|
|
||||||
|
### Custom Retrieval Configuration
|
||||||
|
|
||||||
|
```python
|
||||||
|
kb_tool = BedrockKBRetrieverTool(
|
||||||
|
knowledge_base_id="your-kb-id",
|
||||||
|
retrieval_configuration={
|
||||||
|
"vectorSearchConfiguration": {
|
||||||
|
"numberOfResults": 10,
|
||||||
|
"overrideSearchType": "HYBRID"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
policy_expert = Agent(
|
||||||
|
role='Policy Expert',
|
||||||
|
goal='Analyze company policies in detail',
|
||||||
|
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
|
||||||
|
tools=[kb_tool]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Supported Data Sources
|
||||||
|
|
||||||
|
- Amazon S3
|
||||||
|
- Confluence
|
||||||
|
- Salesforce
|
||||||
|
- SharePoint
|
||||||
|
- Web pages
|
||||||
|
- Custom document locations
|
||||||
|
- Amazon Kendra
|
||||||
|
- SQL databases
|
||||||
|
|
||||||
|
## Use Cases
|
||||||
|
|
||||||
|
### Enterprise Knowledge Integration
|
||||||
|
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
|
||||||
|
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
|
||||||
|
- Create agents that can answer questions based on your internal documentation while maintaining data security
|
||||||
|
|
||||||
|
### Specialized Domain Knowledge
|
||||||
|
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
|
||||||
|
- Leverage existing knowledge repositories that are already maintained in your AWS environment
|
||||||
|
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
|
||||||
|
|
||||||
|
### Data-Driven Decision Making
|
||||||
|
- Ground CrewAI agent responses in your actual company data rather than general knowledge
|
||||||
|
- Ensure agents provide recommendations based on your specific business context and documentation
|
||||||
|
- Reduce hallucinations by retrieving factual information from your knowledge bases
|
||||||
|
|
||||||
|
### Scalable Information Access
|
||||||
|
- Access terabytes of organizational knowledge without embedding it all into your models
|
||||||
|
- Dynamically query only the relevant information needed for specific tasks
|
||||||
|
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
|
||||||
|
|
||||||
|
### Compliance and Governance
|
||||||
|
- Ensure CrewAI agents provide responses that align with your company's approved documentation
|
||||||
|
- Create auditable trails of information sources used by your agents
|
||||||
|
- Maintain control over what information sources your agents can access
|
||||||
Reference in New Issue
Block a user