docs: update changelog dates (#2437)

* docs: update changelog dates

* docs: add aws bedrock tools docs

* docs: fix incorrect respect_context_window parameter in Crew example
This commit is contained in:
Tony Kipkemboi
2025-03-24 12:06:50 -04:00
committed by GitHub
parent ed1f009c64
commit bdc92deade
5 changed files with 365 additions and 12 deletions

View File

@@ -4,7 +4,7 @@ description: View the latest updates and changes to CrewAI
icon: timeline icon: timeline
--- ---
<Update label="2024-03-17" description="v0.108.0"> <Update label="2025-03-17" description="v0.108.0">
**Features** **Features**
- Converted tabs to spaces in `crew.py` template - Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System - Enhanced LLM Streaming Response Handling and Event System
@@ -24,7 +24,7 @@ icon: timeline
- Added documentation for `ApifyActorsTool` - Added documentation for `ApifyActorsTool`
</Update> </Update>
<Update label="2024-03-10" description="v0.105.0"> <Update label="2025-03-10" description="v0.105.0">
**Core Improvements & Fixes** **Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration - Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting - Improved async flow support and addressed agent response formatting
@@ -45,7 +45,7 @@ icon: timeline
- Fixed typos in prompts and updated Amazon Bedrock model listings - Fixed typos in prompts and updated Amazon Bedrock model listings
</Update> </Update>
<Update label="2024-02-12" description="v0.102.0"> <Update label="2025-02-12" description="v0.102.0">
**Core Improvements & Fixes** **Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models - Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks - Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
@@ -65,7 +65,7 @@ icon: timeline
- Fixed Various Typos & Formatting Issues - Fixed Various Typos & Formatting Issues
</Update> </Update>
<Update label="2024-01-28" description="v0.100.0"> <Update label="2025-01-28" description="v0.100.0">
**Features** **Features**
- Add Composio docs - Add Composio docs
- Add SageMaker as a LLM provider - Add SageMaker as a LLM provider
@@ -80,7 +80,7 @@ icon: timeline
- Improve formatting and clarity in CLI and Composio Tool docs - Improve formatting and clarity in CLI and Composio Tool docs
</Update> </Update>
<Update label="2024-01-20" description="v0.98.0"> <Update label="2025-01-20" description="v0.98.0">
**Features** **Features**
- Conversation crew v1 - Conversation crew v1
- Add unique ID to flow states - Add unique ID to flow states
@@ -101,7 +101,7 @@ icon: timeline
- Fixed typos, nested pydantic model issue, and docling issues - Fixed typos, nested pydantic model issue, and docling issues
</Update> </Update>
<Update label="2024-01-04" description="v0.95.0"> <Update label="2025-01-04" description="v0.95.0">
**New Features** **New Features**
- Adding Multimodal Abilities to Crew - Adding Multimodal Abilities to Crew
- Programatic Guardrails - Programatic Guardrails
@@ -131,7 +131,7 @@ icon: timeline
- Suppressed userWarnings from litellm pydantic issues - Suppressed userWarnings from litellm pydantic issues
</Update> </Update>
<Update label="2023-12-05" description="v0.86.0"> <Update label="2024-12-05" description="v0.86.0">
**Changes** **Changes**
- Remove all references to pipeline and pipeline router - Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM - Add Nvidia NIM as provider in Custom LLM
@@ -141,7 +141,7 @@ icon: timeline
- Simplify template crew - Simplify template crew
</Update> </Update>
<Update label="2023-12-04" description="v0.85.0"> <Update label="2024-12-04" description="v0.85.0">
**Features** **Features**
- Added knowledge to agent level - Added knowledge to agent level
- Feat/remove langchain - Feat/remove langchain
@@ -161,7 +161,7 @@ icon: timeline
- Improvements to LLM Configuration and Usage - Improvements to LLM Configuration and Usage
</Update> </Update>
<Update label="2023-11-25" description="v0.83.0"> <Update label="2024-11-25" description="v0.83.0">
**New Features** **New Features**
- New before_kickoff and after_kickoff crew callbacks - New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge - Support to pre-seed agents with Knowledge
@@ -178,7 +178,7 @@ icon: timeline
- Update Docs - Update Docs
</Update> </Update>
<Update label="2023-11-13" description="v0.80.0"> <Update label="2024-11-13" description="v0.80.0">
**Fixes** **Fixes**
- Fixing Tokens callback replacement bug - Fixing Tokens callback replacement bug
- Fixing Step callback issue - Fixing Step callback issue

View File

@@ -111,6 +111,8 @@
"pages": [ "pages": [
"tools/aimindtool", "tools/aimindtool",
"tools/apifyactorstool", "tools/apifyactorstool",
"tools/bedrockinvokeagenttool",
"tools/bedrockkbretriever",
"tools/bravesearchtool", "tools/bravesearchtool",
"tools/browserbaseloadtool", "tools/browserbaseloadtool",
"tools/codedocssearchtool", "tools/codedocssearchtool",

View File

@@ -39,8 +39,7 @@ analysis_crew = Crew(
agents=[coding_agent], agents=[coding_agent],
tasks=[data_analysis_task], tasks=[data_analysis_task],
verbose=True, verbose=True,
memory=False, memory=False
respect_context_window=True # enable by default
) )
datasets = [ datasets = [

View File

@@ -0,0 +1,187 @@
---
title: Bedrock Invoke Agent Tool
description: Enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows
icon: aws
---
# `BedrockInvokeAgentTool`
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Agents
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-8}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:--------|:------------|
| **agent_id** | `str` | Yes | None | The unique identifier of the Bedrock agent |
| **agent_alias_id** | `str` | Yes | None | The unique identifier of the agent alias |
| **session_id** | `str` | No | timestamp | The unique identifier of the session |
| **enable_trace** | `bool` | No | False | Whether to enable trace for debugging |
| **end_session** | `bool` | No | False | Whether to end the session after invocation |
| **description** | `str` | No | None | Custom description for the tool |
## Environment Variables
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
AWS_REGION=your-aws-region # Defaults to us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Advanced Usage
### Multi-Agent Workflow with Session Management
```python {2, 4-22}
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Use Cases
### Hybrid Multi-Agent Collaborations
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
### Data Sovereignty and Compliance
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
### Seamless AWS Service Integration
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
- Enable CrewAI agents to interact with AWS services through natural language requests
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
### Scalable Hybrid Agent Architectures
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
### Cross-Organizational Agent Collaboration
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
- Build agent ecosystems that span organizational boundaries while maintaining security and data control

View File

@@ -0,0 +1,165 @@
---
title: 'Bedrock Knowledge Base Retriever'
description: 'Retrieve information from Amazon Bedrock Knowledge Bases using natural language queries'
icon: aws
---
# `BedrockKBRetrieverTool`
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Knowledge Base
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-17}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
# Initialize the tool
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
number_of_results=5
)
# Create a CrewAI agent that uses the tool
researcher = Agent(
role='Knowledge Base Researcher',
goal='Find information about company policies',
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
tools=[kb_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description="Find our company's remote work policy and summarize the key points.",
agent=researcher
)
# Create a crew with the agent
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:---------|:-------------|
| **knowledge_base_id** | `str` | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
| **number_of_results** | `int` | No | 5 | Maximum number of results to return |
| **retrieval_configuration** | `dict` | No | None | Custom configurations for the knowledge base query |
| **guardrail_configuration** | `dict` | No | None | Content filtering settings |
| **next_token** | `str` | No | None | Token for pagination |
## Environment Variables
```bash
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
AWS_REGION=your-aws-region # Defaults to us-east-1
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Response Format
The tool returns results in JSON format:
```json
{
"results": [
{
"content": "Retrieved text content",
"content_type": "text",
"source_type": "S3",
"source_uri": "s3://bucket/document.pdf",
"score": 0.95,
"metadata": {
"additional": "metadata"
}
}
],
"nextToken": "pagination-token",
"guardrailAction": "NONE"
}
```
## Advanced Usage
### Custom Retrieval Configuration
```python
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
retrieval_configuration={
"vectorSearchConfiguration": {
"numberOfResults": 10,
"overrideSearchType": "HYBRID"
}
}
)
policy_expert = Agent(
role='Policy Expert',
goal='Analyze company policies in detail',
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
tools=[kb_tool]
)
```
## Supported Data Sources
- Amazon S3
- Confluence
- Salesforce
- SharePoint
- Web pages
- Custom document locations
- Amazon Kendra
- SQL databases
## Use Cases
### Enterprise Knowledge Integration
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
- Create agents that can answer questions based on your internal documentation while maintaining data security
### Specialized Domain Knowledge
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
- Leverage existing knowledge repositories that are already maintained in your AWS environment
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
### Data-Driven Decision Making
- Ground CrewAI agent responses in your actual company data rather than general knowledge
- Ensure agents provide recommendations based on your specific business context and documentation
- Reduce hallucinations by retrieving factual information from your knowledge bases
### Scalable Information Access
- Access terabytes of organizational knowledge without embedding it all into your models
- Dynamically query only the relevant information needed for specific tasks
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
### Compliance and Governance
- Ensure CrewAI agents provide responses that align with your company's approved documentation
- Create auditable trails of information sources used by your agents
- Maintain control over what information sources your agents can access