Lorenze/fix google vertex api using api keys (#4243)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled

* supporting vertex through api key use - expo mode

* docs update here

* docs translations

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
This commit is contained in:
Lorenze Jay
2026-01-20 09:34:36 -08:00
committed by GitHub
parent ceef062426
commit b267bb4054
6 changed files with 293 additions and 30 deletions

View File

@@ -107,7 +107,7 @@ CrewAI 코드 내에는 사용할 모델을 지정할 수 있는 여러 위치
## 공급자 구성 예시
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
이 섹션에서는 프로젝트의 요구에 가장 적합한 LLM을 선택, 구성, 최적화하는 데 도움이 되는 자세한 예시를 제공합니다.
<AccordionGroup>
@@ -153,8 +153,8 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
</Accordion>
<Accordion title="Meta-Llama">
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
`.env` 파일에 다음 환경 변수를 설정하십시오:
```toml Code
@@ -207,11 +207,20 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
`.env` 파일에 API 키를 설정하십시오. 키가 필요하거나 기존 키를 찾으려면 [AI Studio](https://aistudio.google.com/apikey)를 확인하세요.
```toml .env
# https://ai.google.dev/gemini-api/docs/api-key
# Gemini API 사용 시 (다음 중 하나)
GOOGLE_API_KEY=<your-api-key>
GEMINI_API_KEY=<your-api-key>
# Vertex AI Express 모드 사용 시 (API 키 인증)
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
# Vertex AI 서비스 계정 사용 시
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # 기본값: us-central1
```
CrewAI 프로젝트에서의 예시 사용법:
**기본 사용법:**
```python Code
from crewai import LLM
@@ -221,6 +230,34 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
)
```
**Vertex AI Express 모드 (API 키 인증):**
Vertex AI Express 모드를 사용하면 서비스 계정 자격 증명 대신 간단한 API 키 인증으로 Vertex AI를 사용할 수 있습니다. Vertex AI를 시작하는 가장 빠른 방법입니다.
Express 모드를 활성화하려면 `.env` 파일에 두 환경 변수를 모두 설정하세요:
```toml .env
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
```
그런 다음 평소처럼 LLM을 사용하세요:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7
)
```
<Info>
Express 모드 API 키를 받으려면:
- 신규 Google Cloud 사용자: [Express 모드 API 키](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey) 받기
- 기존 Google Cloud 사용자: [서비스 계정에 바인딩된 Google Cloud API 키](https://cloud.google.com/docs/authentication/api-keys) 받기
자세한 내용은 [Vertex AI Express 모드 문서](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)를 참조하세요.
</Info>
### Gemini 모델
Google은 다양한 용도에 최적화된 강력한 모델을 제공합니다.
@@ -476,7 +513,7 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
이 방식은 Nvidia GPU를 활용하여 프라이빗하고, 안전하며, 비용 효율적인 AI 추론을 클라우드 서비스에 의존하지 않고 구현할 수 있습니다.
데이터 프라이버시, 오프라인 기능이 필요한 개발, 테스트, 또는 프로덕션 환경에 최적입니다.
@@ -954,4 +991,4 @@ LLM 설정을 최대한 활용하는 방법을 알아보세요:
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
</Tabs>