mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-21 05:48:14 +00:00
Lorenze/fix google vertex api using api keys (#4243)
Some checks failed
Some checks failed
* supporting vertex through api key use - expo mode * docs update here * docs translations --------- Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
This commit is contained in:
@@ -375,10 +375,13 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Optional - for Vertex AI
|
||||
# For Vertex AI Express mode (API key authentication)
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
|
||||
# For Vertex AI with service account
|
||||
GOOGLE_CLOUD_PROJECT=<your-project-id>
|
||||
GOOGLE_CLOUD_LOCATION=<location> # Defaults to us-central1
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true # Set to use Vertex AI
|
||||
```
|
||||
|
||||
**Basic Usage:**
|
||||
@@ -412,7 +415,35 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
)
|
||||
```
|
||||
|
||||
**Vertex AI Configuration:**
|
||||
**Vertex AI Express Mode (API Key Authentication):**
|
||||
|
||||
Vertex AI Express mode allows you to use Vertex AI with simple API key authentication instead of service account credentials. This is the quickest way to get started with Vertex AI.
|
||||
|
||||
To enable Express mode, set both environment variables in your `.env` file:
|
||||
```toml .env
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Then use the LLM as usual:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
To get an Express mode API key:
|
||||
- New Google Cloud users: Get an [express mode API key](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)
|
||||
- Existing Google Cloud users: Get a [Google Cloud API key bound to a service account](https://cloud.google.com/docs/authentication/api-keys)
|
||||
|
||||
For more details, see the [Vertex AI Express mode documentation](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey).
|
||||
</Info>
|
||||
|
||||
**Vertex AI Configuration (Service Account):**
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
@@ -424,10 +455,10 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
```
|
||||
|
||||
**Supported Environment Variables:**
|
||||
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API)
|
||||
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI)
|
||||
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API and Vertex AI Express mode)
|
||||
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI (required for Express mode)
|
||||
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI with service account)
|
||||
- `GOOGLE_CLOUD_LOCATION`: GCP location (defaults to `us-central1`)
|
||||
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI
|
||||
|
||||
**Features:**
|
||||
- Native function calling support for Gemini 1.5+ and 2.x models
|
||||
|
||||
@@ -107,7 +107,7 @@ CrewAI 코드 내에는 사용할 모델을 지정할 수 있는 여러 위치
|
||||
|
||||
## 공급자 구성 예시
|
||||
|
||||
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
|
||||
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
|
||||
이 섹션에서는 프로젝트의 요구에 가장 적합한 LLM을 선택, 구성, 최적화하는 데 도움이 되는 자세한 예시를 제공합니다.
|
||||
|
||||
<AccordionGroup>
|
||||
@@ -153,8 +153,8 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Meta-Llama">
|
||||
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
|
||||
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
|
||||
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
|
||||
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
|
||||
`.env` 파일에 다음 환경 변수를 설정하십시오:
|
||||
|
||||
```toml Code
|
||||
@@ -207,11 +207,20 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
|
||||
`.env` 파일에 API 키를 설정하십시오. 키가 필요하거나 기존 키를 찾으려면 [AI Studio](https://aistudio.google.com/apikey)를 확인하세요.
|
||||
|
||||
```toml .env
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
# Gemini API 사용 시 (다음 중 하나)
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Vertex AI Express 모드 사용 시 (API 키 인증)
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
|
||||
# Vertex AI 서비스 계정 사용 시
|
||||
GOOGLE_CLOUD_PROJECT=<your-project-id>
|
||||
GOOGLE_CLOUD_LOCATION=<location> # 기본값: us-central1
|
||||
```
|
||||
|
||||
CrewAI 프로젝트에서의 예시 사용법:
|
||||
**기본 사용법:**
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
@@ -221,6 +230,34 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
|
||||
)
|
||||
```
|
||||
|
||||
**Vertex AI Express 모드 (API 키 인증):**
|
||||
|
||||
Vertex AI Express 모드를 사용하면 서비스 계정 자격 증명 대신 간단한 API 키 인증으로 Vertex AI를 사용할 수 있습니다. Vertex AI를 시작하는 가장 빠른 방법입니다.
|
||||
|
||||
Express 모드를 활성화하려면 `.env` 파일에 두 환경 변수를 모두 설정하세요:
|
||||
```toml .env
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
그런 다음 평소처럼 LLM을 사용하세요:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
Express 모드 API 키를 받으려면:
|
||||
- 신규 Google Cloud 사용자: [Express 모드 API 키](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey) 받기
|
||||
- 기존 Google Cloud 사용자: [서비스 계정에 바인딩된 Google Cloud API 키](https://cloud.google.com/docs/authentication/api-keys) 받기
|
||||
|
||||
자세한 내용은 [Vertex AI Express 모드 문서](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)를 참조하세요.
|
||||
</Info>
|
||||
|
||||
### Gemini 모델
|
||||
|
||||
Google은 다양한 용도에 최적화된 강력한 모델을 제공합니다.
|
||||
@@ -476,7 +513,7 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
|
||||
|
||||
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
|
||||
|
||||
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
|
||||
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
|
||||
이 방식은 Nvidia GPU를 활용하여 프라이빗하고, 안전하며, 비용 효율적인 AI 추론을 클라우드 서비스에 의존하지 않고 구현할 수 있습니다.
|
||||
데이터 프라이버시, 오프라인 기능이 필요한 개발, 테스트, 또는 프로덕션 환경에 최적입니다.
|
||||
|
||||
@@ -954,4 +991,4 @@ LLM 설정을 최대한 활용하는 방법을 알아보세요:
|
||||
llm = LLM(model="openai/gpt-4o") # 128K tokens
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
</Tabs>
|
||||
|
||||
@@ -79,7 +79,7 @@ Existem diferentes locais no código do CrewAI onde você pode especificar o mod
|
||||
|
||||
# Configuração avançada com parâmetros detalhados
|
||||
llm = LLM(
|
||||
model="openai/gpt-4",
|
||||
model="openai/gpt-4",
|
||||
temperature=0.8,
|
||||
max_tokens=150,
|
||||
top_p=0.9,
|
||||
@@ -207,11 +207,20 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
|
||||
Defina sua chave de API no seu arquivo `.env`. Se precisar de uma chave, ou encontrar uma existente, verifique o [AI Studio](https://aistudio.google.com/apikey).
|
||||
|
||||
```toml .env
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
# Para API Gemini (uma das seguintes)
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Para Vertex AI Express mode (autenticação por chave de API)
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
|
||||
# Para Vertex AI com conta de serviço
|
||||
GOOGLE_CLOUD_PROJECT=<your-project-id>
|
||||
GOOGLE_CLOUD_LOCATION=<location> # Padrão: us-central1
|
||||
```
|
||||
|
||||
Exemplo de uso em seu projeto CrewAI:
|
||||
**Uso Básico:**
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
@@ -221,6 +230,34 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
|
||||
)
|
||||
```
|
||||
|
||||
**Vertex AI Express Mode (Autenticação por Chave de API):**
|
||||
|
||||
O Vertex AI Express mode permite usar o Vertex AI com autenticação simples por chave de API, em vez de credenciais de conta de serviço. Esta é a maneira mais rápida de começar com o Vertex AI.
|
||||
|
||||
Para habilitar o Express mode, defina ambas as variáveis de ambiente no seu arquivo `.env`:
|
||||
```toml .env
|
||||
GOOGLE_GENAI_USE_VERTEXAI=true
|
||||
GOOGLE_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Em seguida, use o LLM normalmente:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
Para obter uma chave de API do Express mode:
|
||||
- Novos usuários do Google Cloud: Obtenha uma [chave de API do Express mode](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)
|
||||
- Usuários existentes do Google Cloud: Obtenha uma [chave de API do Google Cloud vinculada a uma conta de serviço](https://cloud.google.com/docs/authentication/api-keys)
|
||||
|
||||
Para mais detalhes, consulte a [documentação do Vertex AI Express mode](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey).
|
||||
</Info>
|
||||
|
||||
### Modelos Gemini
|
||||
|
||||
O Google oferece uma variedade de modelos poderosos otimizados para diferentes casos de uso.
|
||||
@@ -823,7 +860,7 @@ Saiba como obter o máximo da configuração do seu LLM:
|
||||
Lembre-se de monitorar regularmente o uso de tokens e ajustar suas configurações para otimizar custos e desempenho.
|
||||
</Info>
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Descartar Parâmetros Adicionais">
|
||||
O CrewAI usa Litellm internamente para chamadas LLM, permitindo descartar parâmetros adicionais desnecessários para seu caso de uso. Isso pode simplificar seu código e reduzir a complexidade da configuração do LLM.
|
||||
Por exemplo, se não precisar enviar o parâmetro <code>stop</code>, basta omiti-lo na chamada do LLM:
|
||||
@@ -882,4 +919,4 @@ Saiba como obter o máximo da configuração do seu LLM:
|
||||
llm = LLM(model="openai/gpt-4o") # 128K tokens
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
</Tabs>
|
||||
|
||||
Reference in New Issue
Block a user