Updated calls and added tests to verify (#1953)

* Updated calls and added tests to verify

* Drop unused import
This commit is contained in:
Brandon Hancock (bhancock_ai)
2025-01-22 14:36:15 -05:00
committed by GitHub
parent 67f0de1f90
commit a836f466f4
7 changed files with 685 additions and 19 deletions

View File

@@ -172,32 +172,50 @@ class LLM:
def call(
self,
messages: List[Dict[str, str]],
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level call method that:
1) Calls litellm.completion
2) Checks for function/tool calls
3) If a tool call is found:
a) executes the function
b) returns the result
4) If no tool call, returns the text response
High-level llm call method that:
1) Accepts either a string or a list of messages
2) Converts string input to the required message format
3) Calls litellm.completion
4) Handles function/tool calls if any
5) Returns the final text response or tool result
:param messages: The conversation messages
:param tools: Optional list of function schemas for function calling
:param callbacks: Optional list of callbacks
:param available_functions: A dictionary mapping function_name -> actual Python function
:return: Final text response from the LLM or the tool result
Parameters:
- messages (Union[str, List[Dict[str, str]]]): The input messages for the LLM.
- If a string is provided, it will be converted into a message list with a single entry.
- If a list of dictionaries is provided, each dictionary should have 'role' and 'content' keys.
- tools (Optional[List[dict]]): A list of tool schemas for function calling.
- callbacks (Optional[List[Any]]): A list of callback functions to be executed.
- available_functions (Optional[Dict[str, Any]]): A dictionary mapping function names to actual Python functions.
Returns:
- str: The final text response from the LLM or the result of a tool function call.
Examples:
---------
# Example 1: Using a string input
response = llm.call("Return the name of a random city in the world.")
print(response)
# Example 2: Using a list of messages
messages = [{"role": "user", "content": "What is the capital of France?"}]
response = llm.call(messages)
print(response)
"""
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 1) Make the completion call
# --- 1) Prepare the parameters for the completion call
params = {
"model": self.model,
"messages": messages,
@@ -218,11 +236,13 @@ class LLM:
"api_version": self.api_version,
"api_key": self.api_key,
"stream": False,
"tools": tools, # pass the tool schema
"tools": tools,
}
# Remove None values from params
params = {k: v for k, v in params.items() if v is not None}
# --- 2) Make the completion call
response = litellm.completion(**params)
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
@@ -230,7 +250,7 @@ class LLM:
text_response = response_message.content or ""
tool_calls = getattr(response_message, "tool_calls", [])
# Ensure callbacks get the full response object with usage info
# --- 3) Handle callbacks with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
@@ -243,11 +263,11 @@ class LLM:
end_time=0,
)
# --- 2) If no tool calls, return the text response
# --- 4) If no tool calls, return the text response
if not tool_calls or not available_functions:
return text_response
# --- 3) Handle the tool call
# --- 5) Handle the tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
@@ -262,7 +282,6 @@ class LLM:
try:
# Call the actual tool function
result = fn(**function_args)
return result
except Exception as e: