mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-27 17:18:13 +00:00
Updating docs
This commit is contained in:
@@ -5,7 +5,7 @@ description: Comprehensive guide on integrating CrewAI with various Large Langua
|
||||
|
||||
## Connect CrewAI to LLMs
|
||||
!!! note "Default LLM"
|
||||
By default, CrewAI uses OpenAI's GPT-4 model for language processing. However, you can configure your agents to use a different model or API. This guide will show you how to connect your agents to different LLMs through environment variables and direct instantiation.
|
||||
By default, CrewAI uses OpenAI's GPT-4 model for language processing. You can configure your agents to use a different model or API. This guide shows how to connect your agents to various LLMs through environment variables and direct instantiation.
|
||||
|
||||
CrewAI offers flexibility in connecting to various LLMs, including local models via [Ollama](https://ollama.ai) and different APIs like Azure. It's compatible with all [LangChain LLM](https://python.langchain.com/docs/integrations/llms/) components, enabling diverse integrations for tailored AI solutions.
|
||||
|
||||
@@ -16,15 +16,16 @@ The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. He
|
||||
- `role`: Defines the agent's role within the solution.
|
||||
- `goal`: Specifies the agent's objective.
|
||||
- `backstory`: Provides a background story to the agent.
|
||||
- `llm`: Indicates the Large Language Model the agent uses.
|
||||
- `function_calling_llm` *Optinal*: Will turn the ReAct crewAI agent into a function calling agent.
|
||||
- `llm`: The language model that will run the agent. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
|
||||
- `function_calling_llm`: The language model that will handle the tool calling for this agent, overriding the crew function_calling_llm. Optional.
|
||||
- `max_iter`: Maximum number of iterations for an agent to execute a task, default is 15.
|
||||
- `memory`: Enables the agent to retain information during the execution.
|
||||
- `max_rpm`: Sets the maximum number of requests per minute.
|
||||
- `verbose`: Enables detailed logging of the agent's execution.
|
||||
- `memory`: Enables the agent to retain information during and a across executions. Default is `False`.
|
||||
- `max_rpm`: Maximum number of requests per minute the agent's execution should respect. Optional.
|
||||
- `verbose`: Enables detailed logging of the agent's execution. Default is `False`.
|
||||
- `allow_delegation`: Allows the agent to delegate tasks to other agents, default is `True`.
|
||||
- `tools`: Specifies the tools available to the agent for task execution.
|
||||
- `step_callback`: Provides a callback function to be executed after each step.
|
||||
- `tools`: Specifies the tools available to the agent for task execution. Optional.
|
||||
- `step_callback`: Provides a callback function to be executed after each step. Optional.
|
||||
- `cache`: Determines whether the agent should use a cache for tool usage. Default is `True`.
|
||||
|
||||
```python
|
||||
# Required
|
||||
@@ -35,7 +36,8 @@ example_agent = Agent(
|
||||
role='Local Expert',
|
||||
goal='Provide insights about the city',
|
||||
backstory="A knowledgeable local guide.",
|
||||
verbose=True
|
||||
verbose=True,
|
||||
memory=True
|
||||
)
|
||||
```
|
||||
|
||||
@@ -51,7 +53,7 @@ OPENAI_API_KEY=''
|
||||
```
|
||||
|
||||
## HuggingFace Integration
|
||||
There are a couple different ways you can use HuggingFace to host your LLM.
|
||||
There are a couple of different ways you can use HuggingFace to host your LLM.
|
||||
|
||||
### Your own HuggingFace endpoint
|
||||
```python
|
||||
|
||||
Reference in New Issue
Block a user