mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 08:08:32 +00:00
Migrate docs from MkDocs to Mintlify (#1423)
* add new mintlify docs * add favicon.svg * minor edits * add github stats
This commit is contained in:
84
docs/tools/codedocssearchtool.mdx
Normal file
84
docs/tools/codedocssearchtool.mdx
Normal file
@@ -0,0 +1,84 @@
|
||||
---
|
||||
title: Code Docs RAG Search
|
||||
description: The `CodeDocsSearchTool` is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic searches within code documentation.
|
||||
icon: code
|
||||
---
|
||||
|
||||
# `CodeDocsSearchTool`
|
||||
|
||||
<Note>
|
||||
**Experimental**: We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
</Note>
|
||||
|
||||
## Description
|
||||
|
||||
The CodeDocsSearchTool is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic searches within code documentation.
|
||||
It enables users to efficiently find specific information or topics within code documentation. By providing a `docs_url` during initialization,
|
||||
the tool narrows down the search to that particular documentation site. Alternatively, without a specific `docs_url`,
|
||||
it searches across a wide array of code documentation known or discovered throughout its execution, making it versatile for various documentation search needs.
|
||||
|
||||
## Installation
|
||||
|
||||
To start using the CodeDocsSearchTool, first, install the crewai_tools package via pip:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Utilize the CodeDocsSearchTool as follows to conduct searches within code documentation:
|
||||
|
||||
```python Code
|
||||
from crewai_tools import CodeDocsSearchTool
|
||||
|
||||
# To search any code documentation content
|
||||
# if the URL is known or discovered during its execution:
|
||||
tool = CodeDocsSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# To specifically focus your search on a given documentation site
|
||||
# by providing its URL:
|
||||
tool = CodeDocsSearchTool(docs_url='https://docs.example.com/reference')
|
||||
```
|
||||
<Note>
|
||||
Substitute 'https://docs.example.com/reference' with your target documentation URL
|
||||
and 'How to use search tool' with the search query relevant to your needs.
|
||||
</Note>
|
||||
|
||||
## Arguments
|
||||
|
||||
The following parameters can be used to customize the `CodeDocsSearchTool`'s behavior:
|
||||
|
||||
| Argument | Type | Description |
|
||||
|:---------------|:---------|:-------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| **docs_url** | `string` | _Optional_. Specifies the URL of the code documentation to be searched. |
|
||||
|
||||
## Custom model and embeddings
|
||||
|
||||
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
|
||||
|
||||
```python Code
|
||||
tool = CodeDocsSearchTool(
|
||||
config=dict(
|
||||
llm=dict(
|
||||
provider="ollama", # or google, openai, anthropic, llama2, ...
|
||||
config=dict(
|
||||
model="llama2",
|
||||
# temperature=0.5,
|
||||
# top_p=1,
|
||||
# stream=true,
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
# title="Embeddings",
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
```
|
||||
Reference in New Issue
Block a user