mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-14 10:38:29 +00:00
Merge branch 'bugfix/kickoff-for-each-usage-metrics' into feature/kickoff-consistent-output
This commit is contained in:
@@ -18,7 +18,20 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
import agentops
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
"""Represents an agent in a system.
|
||||
|
||||
@@ -47,6 +60,8 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Maximum execution time for an agent to execute a task",
|
||||
)
|
||||
agent_ops_agent_name: str = None
|
||||
agent_ops_agent_id: str = None
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
@@ -82,6 +97,7 @@ class Agent(BaseAgent):
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
@@ -99,6 +115,12 @@ class Agent(BaseAgent):
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
if not self.agent_executor:
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
|
||||
@@ -15,8 +15,9 @@ from pydantic import (
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents import CacheHandler, ToolsHandler
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
@@ -1,65 +1,109 @@
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
|
||||
|
||||
class CrewAgentExecutorMixin:
|
||||
crew: Optional["Crew"]
|
||||
crew_agent: Optional["BaseAgent"]
|
||||
task: Optional["Task"]
|
||||
iterations: int
|
||||
force_answer_max_iterations: int
|
||||
have_forced_answer: bool
|
||||
_i18n: I18N
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
"""Determine if a forced answer is required based on iteration count."""
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _create_short_term_memory(self, output) -> None:
|
||||
"""Create and save a short-term memory item if conditions are met."""
|
||||
if (
|
||||
self.crew
|
||||
and self.crew_agent
|
||||
and self.task
|
||||
and "Action: Delegate work to coworker" not in output.log
|
||||
):
|
||||
try:
|
||||
memory = ShortTermMemoryItem(
|
||||
data=output.log,
|
||||
agent=self.crew_agent.role,
|
||||
metadata={
|
||||
"observation": self.task.description,
|
||||
},
|
||||
)
|
||||
if (
|
||||
hasattr(self.crew, "_short_term_memory")
|
||||
and self.crew._short_term_memory
|
||||
):
|
||||
self.crew._short_term_memory.save(memory)
|
||||
except Exception as e:
|
||||
print(f"Failed to add to short term memory: {e}")
|
||||
pass
|
||||
|
||||
def _create_long_term_memory(self, output) -> None:
|
||||
"""Create and save long-term and entity memory items based on evaluation."""
|
||||
if (
|
||||
self.crew
|
||||
and self.crew.memory
|
||||
and "Action: Delegate work to coworker" not in output.log
|
||||
and self.crew._long_term_memory
|
||||
and self.crew._entity_memory
|
||||
and self.task
|
||||
and self.crew_agent
|
||||
):
|
||||
memory = ShortTermMemoryItem(
|
||||
data=output.log,
|
||||
agent=self.crew_agent.role,
|
||||
metadata={
|
||||
"observation": self.task.description,
|
||||
},
|
||||
)
|
||||
self.crew._short_term_memory.save(memory)
|
||||
try:
|
||||
ltm_agent = TaskEvaluator(self.crew_agent)
|
||||
evaluation = ltm_agent.evaluate(self.task, output.log)
|
||||
|
||||
def _create_long_term_memory(self, output) -> None:
|
||||
if self.crew and self.crew.memory:
|
||||
ltm_agent = TaskEvaluator(self.crew_agent)
|
||||
evaluation = ltm_agent.evaluate(self.task, output.log)
|
||||
if isinstance(evaluation, ConverterError):
|
||||
return
|
||||
|
||||
if isinstance(evaluation, ConverterError):
|
||||
return
|
||||
|
||||
long_term_memory = LongTermMemoryItem(
|
||||
task=self.task.description,
|
||||
agent=self.crew_agent.role,
|
||||
quality=evaluation.quality,
|
||||
datetime=str(time.time()),
|
||||
expected_output=self.task.expected_output,
|
||||
metadata={
|
||||
"suggestions": evaluation.suggestions,
|
||||
"quality": evaluation.quality,
|
||||
},
|
||||
)
|
||||
self.crew._long_term_memory.save(long_term_memory)
|
||||
|
||||
for entity in evaluation.entities:
|
||||
entity_memory = EntityMemoryItem(
|
||||
name=entity.name,
|
||||
type=entity.type,
|
||||
description=entity.description,
|
||||
relationships="\n".join([f"- {r}" for r in entity.relationships]),
|
||||
long_term_memory = LongTermMemoryItem(
|
||||
task=self.task.description,
|
||||
agent=self.crew_agent.role,
|
||||
quality=evaluation.quality,
|
||||
datetime=str(time.time()),
|
||||
expected_output=self.task.expected_output,
|
||||
metadata={
|
||||
"suggestions": evaluation.suggestions,
|
||||
"quality": evaluation.quality,
|
||||
},
|
||||
)
|
||||
self.crew._entity_memory.save(entity_memory)
|
||||
self.crew._long_term_memory.save(long_term_memory)
|
||||
|
||||
for entity in evaluation.entities:
|
||||
entity_memory = EntityMemoryItem(
|
||||
name=entity.name,
|
||||
type=entity.type,
|
||||
description=entity.description,
|
||||
relationships="\n".join(
|
||||
[f"- {r}" for r in entity.relationships]
|
||||
),
|
||||
)
|
||||
self.crew._entity_memory.save(entity_memory)
|
||||
except AttributeError as e:
|
||||
print(f"Missing attributes for long term memory: {e}")
|
||||
pass
|
||||
except Exception as e:
|
||||
print(f"Failed to add to long term memory: {e}")
|
||||
pass
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
"""Get human input."""
|
||||
"""Prompt human input for final decision making."""
|
||||
return input(
|
||||
self._i18n.slice("getting_input").format(final_answer=final_answer)
|
||||
)
|
||||
|
||||
@@ -1,6 +1,14 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent import ExceptionTool
|
||||
@@ -11,13 +19,15 @@ from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import (
|
||||
CrewAgentExecutorMixin,
|
||||
)
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.35.4" }
|
||||
crewai = { extras = ["tools"], version = "^0.35.8" }
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:run"
|
||||
|
||||
@@ -35,6 +35,11 @@ from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.formatter import aggregate_raw_outputs_from_task_outputs
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
try:
|
||||
import agentops
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
|
||||
class Crew(BaseModel):
|
||||
"""
|
||||
@@ -599,6 +604,12 @@ class Crew(BaseModel):
|
||||
def _finish_execution(self, final_string_output: str) -> None:
|
||||
if self.max_rpm:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
if agentops:
|
||||
agentops.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
is_auto_end=True,
|
||||
)
|
||||
self._telemetry.end_crew(self, final_string_output)
|
||||
|
||||
def calculate_usage_metrics(self) -> Dict[str, int]:
|
||||
|
||||
@@ -11,6 +11,12 @@ from crewai.telemetry import Telemetry
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
import agentops
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4"]
|
||||
|
||||
|
||||
@@ -91,15 +97,16 @@ class ToolUsage:
|
||||
self.task.increment_tools_errors()
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
return error
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
|
||||
def _use(
|
||||
self,
|
||||
tool_string: str,
|
||||
tool: BaseTool,
|
||||
calling: Union[ToolCalling, InstructorToolCalling],
|
||||
) -> str: # TODO: Fix this return type --> finecwg : I updated return type to str
|
||||
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
|
||||
) -> str: # TODO: Fix this return type
|
||||
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None
|
||||
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
|
||||
try:
|
||||
result = self._i18n.errors("task_repeated_usage").format(
|
||||
tool_names=self.tools_names
|
||||
@@ -110,13 +117,13 @@ class ToolUsage:
|
||||
tool_name=tool.name,
|
||||
attempts=self._run_attempts,
|
||||
)
|
||||
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return result # type: ignore # Fix the reutrn type of this function
|
||||
|
||||
except Exception:
|
||||
self.task.increment_tools_errors()
|
||||
|
||||
result = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
result = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
|
||||
if self.tools_handler.cache:
|
||||
result = self.tools_handler.cache.read( # type: ignore # Incompatible types in assignment (expression has type "str | None", variable has type "str")
|
||||
@@ -133,7 +140,7 @@ class ToolUsage:
|
||||
|
||||
if calling.arguments:
|
||||
try:
|
||||
acceptable_args = tool.args_schema.schema()["properties"].keys() # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "schema"
|
||||
acceptable_args = tool.args_schema.schema()["properties"].keys() # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "schema"
|
||||
arguments = {
|
||||
k: v
|
||||
for k, v in calling.arguments.items()
|
||||
@@ -145,7 +152,7 @@ class ToolUsage:
|
||||
arguments = calling.arguments
|
||||
result = tool._run(**arguments)
|
||||
else:
|
||||
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
|
||||
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
|
||||
result = tool._run(*arguments)
|
||||
else:
|
||||
result = tool._run()
|
||||
@@ -164,6 +171,10 @@ class ToolUsage:
|
||||
return error # type: ignore # No return value expected
|
||||
|
||||
self.task.increment_tools_errors()
|
||||
if agentops:
|
||||
agentops.record(
|
||||
agentops.ErrorEvent(exception=e, trigger_event=tool_event)
|
||||
)
|
||||
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
|
||||
|
||||
if self.tools_handler:
|
||||
@@ -184,18 +195,20 @@ class ToolUsage:
|
||||
)
|
||||
|
||||
self._printer.print(content=f"\n\n{result}\n", color="purple")
|
||||
if agentops:
|
||||
agentops.record(tool_event)
|
||||
self._telemetry.tool_usage(
|
||||
llm=self.function_calling_llm,
|
||||
tool_name=tool.name,
|
||||
attempts=self._run_attempts,
|
||||
)
|
||||
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
)
|
||||
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return result # type: ignore # No return value expected
|
||||
|
||||
def _format_result(self, result: Any) -> None:
|
||||
self.task.used_tools += 1
|
||||
if self._should_remember_format(): # type: ignore # "_should_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return result
|
||||
|
||||
def _should_remember_format(self) -> None:
|
||||
|
||||
@@ -5,6 +5,17 @@ from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
agentops = None
|
||||
try:
|
||||
import agentops
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
|
||||
def track_agent(name):
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
@@ -38,6 +49,7 @@ class TrainingTaskEvaluation(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
@track_agent(name="Task Evaluator")
|
||||
class TaskEvaluator:
|
||||
def __init__(self, original_agent):
|
||||
self.llm = original_agent.llm
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from datetime import datetime
|
||||
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
class Logger:
|
||||
_printer = Printer()
|
||||
|
||||
Reference in New Issue
Block a user