feat: a2a extensions API and async agent card caching; fix task propagation & streaming
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled

Adds initial extensions API (with registry temporarily no-op), introduces aiocache for async caching, ensures reference task IDs propagate correctly, fixes streamed response model handling, updates streaming tests, and regenerates lockfiles.
This commit is contained in:
Greyson LaLonde
2025-12-03 16:29:48 -05:00
committed by GitHub
parent 09f1ba6956
commit a25778974d
10 changed files with 674 additions and 198 deletions

View File

@@ -505,30 +505,43 @@ def test_openai_streaming_with_response_model():
llm = LLM(model="openai/gpt-4o", stream=True)
with patch.object(llm.client.chat.completions, "create") as mock_create:
with patch.object(llm.client.beta.chat.completions, "stream") as mock_stream:
# Create mock chunks with content.delta event structure
mock_chunk1 = MagicMock()
mock_chunk1.choices = [
MagicMock(delta=MagicMock(content='{"answer": "test", ', tool_calls=None))
]
mock_chunk1.type = "content.delta"
mock_chunk1.delta = '{"answer": "test", '
mock_chunk2 = MagicMock()
mock_chunk2.choices = [
MagicMock(
delta=MagicMock(content='"confidence": 0.95}', tool_calls=None)
)
]
mock_chunk2.type = "content.delta"
mock_chunk2.delta = '"confidence": 0.95}'
mock_create.return_value = iter([mock_chunk1, mock_chunk2])
# Create mock final completion with parsed result
mock_parsed = TestResponse(answer="test", confidence=0.95)
mock_message = MagicMock()
mock_message.parsed = mock_parsed
mock_choice = MagicMock()
mock_choice.message = mock_message
mock_final_completion = MagicMock()
mock_final_completion.choices = [mock_choice]
# Create mock stream context manager
mock_stream_obj = MagicMock()
mock_stream_obj.__enter__ = MagicMock(return_value=mock_stream_obj)
mock_stream_obj.__exit__ = MagicMock(return_value=None)
mock_stream_obj.__iter__ = MagicMock(return_value=iter([mock_chunk1, mock_chunk2]))
mock_stream_obj.get_final_completion = MagicMock(return_value=mock_final_completion)
mock_stream.return_value = mock_stream_obj
result = llm.call("Test question", response_model=TestResponse)
assert result is not None
assert isinstance(result, str)
assert mock_create.called
call_kwargs = mock_create.call_args[1]
assert mock_stream.called
call_kwargs = mock_stream.call_args[1]
assert call_kwargs["model"] == "gpt-4o"
assert call_kwargs["stream"] is True
assert call_kwargs["response_format"] == TestResponse
assert "input" not in call_kwargs
assert "text_format" not in call_kwargs