docs: parity for all translations

This commit is contained in:
tonykipkemboi
2025-10-01 14:11:23 -04:00
parent b5161c320d
commit 9e1dae0746
196 changed files with 3167 additions and 1330 deletions

View File

@@ -0,0 +1,59 @@
---
title: Zapier Actions Tool
description: The `ZapierActionsAdapter` exposes Zapier actions as CrewAI tools for automation.
icon: bolt
mode: "wide"
---
# `ZapierActionsAdapter`
## Description
Use the Zapier adapter to list and call Zapier actions as CrewAI tools. This enables agents to trigger automations across thousands of apps.
## Installation
This adapter is included with `crewai-tools`. No extra install required.
## Environment Variables
- `ZAPIER_API_KEY` (required): Zapier API key. Get one from the Zapier Actions dashboard at https://actions.zapier.com/ (create an account, then generate an API key). You can also pass `zapier_api_key` directly when constructing the adapter.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.adapters.zapier_adapter import ZapierActionsAdapter
adapter = ZapierActionsAdapter(api_key="your_zapier_api_key")
tools = adapter.tools()
agent = Agent(
role="Automator",
goal="Execute Zapier actions",
backstory="Automation specialist",
tools=tools,
verbose=True,
)
task = Task(
description="Create a new Google Sheet and add a row using Zapier actions",
expected_output="Confirmation with created resource IDs",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes & limits
- The adapter lists available actions for your key and creates `BaseTool` wrappers dynamically.
- Handle actionspecific required fields in your task instructions or tool call.
- Rate limits depend on your Zapier plan; see the Zapier Actions docs.
## Notes
- The adapter fetches available actions and generates `BaseTool` wrappers dynamically.

View File

@@ -1,188 +0,0 @@
---
title: Ferramenta Bedrock Invoke Agent
description: Permite que agentes CrewAI invoquem Amazon Bedrock Agents e aproveitem suas capacidades em seus fluxos de trabalho
icon: aws
mode: "wide"
---
# `BedrockInvokeAgentTool`
A `BedrockInvokeAgentTool` permite que agentes CrewAI invoquem Amazon Bedrock Agents e aproveitem suas capacidades em seus fluxos de trabalho.
## Instalação
```bash
uv pip install 'crewai[tools]'
```
## Requisitos
- Credenciais AWS configuradas (através de variáveis de ambiente ou AWS CLI)
- Pacotes `boto3` e `python-dotenv`
- Acesso aos Amazon Bedrock Agents
## Uso
Veja como usar a ferramenta com um agente CrewAI:
```python {2, 4-8}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Argumentos da Ferramenta
| Argumento | Tipo | Obrigatório | Padrão | Descrição |
|:----------|:-----|:------------|:---------|:----------------------------------------------------|
| **agent_id** | `str` | Sim | None | O identificador único do agente Bedrock |
| **agent_alias_id** | `str` | Sim | None | O identificador único do alias do agente |
| **session_id** | `str` | Não | timestamp | O identificador único da sessão |
| **enable_trace** | `bool` | Não | False | Define se o trace deve ser habilitado para debug |
| **end_session** | `bool` | Não | False | Define se a sessão deve ser encerrada após invocação |
| **description** | `str` | Não | None | Descrição personalizada para a ferramenta |
## Variáveis de Ambiente
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternativa para passar agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternativa para passar agent_alias_id
AWS_REGION=your-aws-region # Padrão é us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Necessário para autenticação AWS
AWS_SECRET_ACCESS_KEY=your-secret-key # Necessário para autenticação AWS
```
## Uso Avançado
### Fluxo de Trabalho Multiagente com Gerenciamento de Sessão
```python {2, 4-22}
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Casos de Uso
### Colaborações Híbridas Multiagente
- Crie fluxos de trabalho onde agentes CrewAI colaboram com agentes Bedrock gerenciados executando como serviços na AWS
- Permita cenários em que o processamento de dados sensíveis ocorre dentro do seu ambiente AWS enquanto outros agentes operam externamente
- Conecte agentes CrewAI on-premises a agentes Bedrock baseados na nuvem para fluxos de trabalho distribuídos de inteligência
### Soberania e Conformidade de Dados
- Mantenha fluxos de trabalho agentivos sensíveis a dados dentro do seu ambiente AWS enquanto permite que agentes CrewAI externos orquestrem tarefas
- Mantenha conformidade com requisitos de residência de dados processando informações sensíveis somente em sua conta AWS
- Permita colaborações multiagentes seguras onde alguns agentes não podem acessar dados privados da sua organização
### Integração Transparente com Serviços AWS
- Acesse qualquer serviço AWS por meio do Amazon Bedrock Actions sem escrever código de integração complexo
- Permita que agentes CrewAI interajam com serviços AWS usando solicitações em linguagem natural
- Aproveite as capacidades pré-construídas dos agentes Bedrock para interagir com serviços AWS como Bedrock Knowledge Bases, Lambda e outros
### Arquiteturas de Agentes Híbridos Escaláveis
- Realize tarefas computacionalmente intensivas em agentes Bedrock gerenciados enquanto tarefas leves rodam em CrewAI
- Escale o processamento de agentes distribuindo cargas de trabalho entre agentes CrewAI locais e agentes Bedrock na nuvem
### Colaboração de Agentes Entre Organizações
- Permita colaboração segura entre agentes CrewAI da sua organização e agentes Bedrock de organizações parceiras
- Crie fluxos de trabalho onde a expertise externa de agentes Bedrock pode ser incorporada sem expor dados sensíveis
- Construa ecossistemas de agentes que abrangem fronteiras organizacionais mantendo segurança e controle de dados

View File

@@ -0,0 +1,169 @@
---
title: MongoDB Vector Search Tool
description: The `MongoDBVectorSearchTool` performs vector search on MongoDB Atlas with optional indexing helpers.
icon: "leaf"
mode: "wide"
---
# `MongoDBVectorSearchTool`
## Description
Perform vector similarity queries on MongoDB Atlas collections. Supports index creation helpers and bulk insert of embedded texts.
MongoDB Atlas supports native vector search. Learn more:
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/
## Installation
Install with the MongoDB extra:
```shell
pip install crewai-tools[mongodb]
```
or
```shell
uv add crewai-tools --extra mongodb
```
## Parameters
### Initialization
- `connection_string` (str, required)
- `database_name` (str, required)
- `collection_name` (str, required)
- `vector_index_name` (str, default `vector_index`)
- `text_key` (str, default `text`)
- `embedding_key` (str, default `embedding`)
- `dimensions` (int, default `1536`)
### Run Parameters
- `query` (str, required): Natural language query to embed and search.
## Quick start
```python Code
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
connection_string="mongodb+srv://...",
database_name="mydb",
collection_name="docs",
)
print(tool.run(query="how to create vector index"))
```
## Index creation helpers
Use `create_vector_search_index(...)` to provision an Atlas Vector Search index with the correct dimensions and similarity.
## Common issues
- Authentication failures: ensure your Atlas IP Access List allows your runner and the connection string includes credentials.
- Index not found: create the vector index first; name must match `vector_index_name`.
- Dimensions mismatch: align embedding model dimensions with `dimensions`.
## More examples
### Basic initialization
```python Code
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
)
```
### Custom query configuration
```python Code
from crewai_tools import MongoDBVectorSearchConfig, MongoDBVectorSearchTool
query_config = MongoDBVectorSearchConfig(limit=10, oversampling_factor=2)
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
query_config=query_config,
vector_index_name="my_vector_index",
)
rag_agent = Agent(
name="rag_agent",
role="You are a helpful assistant that can answer questions with the help of the MongoDBVectorSearchTool.",
goal="...",
backstory="...",
tools=[tool],
)
```
### Preloading the database and creating the index
```python Code
import os
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
)
# Load text content from a local folder and add to MongoDB
texts = []
for fname in os.listdir("knowledge"):
path = os.path.join("knowledge", fname)
if os.path.isfile(path):
with open(path, "r", encoding="utf-8") as f:
texts.append(f.read())
tool.add_texts(texts)
# Create the Atlas Vector Search index (e.g., 3072 dims for text-embedding-3-large)
tool.create_vector_search_index(dimensions=3072)
```
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
connection_string="mongodb+srv://...",
database_name="mydb",
collection_name="docs",
)
agent = Agent(
role="RAG Agent",
goal="Answer using MongoDB vector search",
backstory="Knowledge retrieval specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Find relevant content for 'indexing guidance'",
expected_output="A concise answer citing the most relevant matches",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -0,0 +1,62 @@
---
title: SingleStore Search Tool
description: The `SingleStoreSearchTool` safely executes SELECT/SHOW queries on SingleStore with pooling.
icon: circle
mode: "wide"
---
# `SingleStoreSearchTool`
## Description
Execute readonly queries (`SELECT`/`SHOW`) against SingleStore with connection pooling and input validation.
## Installation
```shell
uv add crewai-tools[singlestore]
```
## Environment Variables
Variables like `SINGLESTOREDB_HOST`, `SINGLESTOREDB_USER`, `SINGLESTOREDB_PASSWORD`, etc., can be used, or `SINGLESTOREDB_URL` as a single DSN.
Generate the API key from the SingleStore dashboard, [docs here](https://docs.singlestore.com/cloud/reference/management-api/#generate-an-api-key).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SingleStoreSearchTool
tool = SingleStoreSearchTool(
tables=["products"],
host="host",
user="user",
password="pass",
database="db",
)
agent = Agent(
role="Analyst",
goal="Query SingleStore",
tools=[tool],
verbose=True,
)
task = Task(
description="List 5 products",
expected_output="5 rows as JSON/text",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -0,0 +1,90 @@
---
title: OCR Tool
description: The `OCRTool` extracts text from local images or image URLs using an LLM with vision.
icon: image
mode: "wide"
---
# `OCRTool`
## Description
Extract text from images (local path or URL). Uses a visioncapable LLM via CrewAIs LLM interface.
## Installation
No extra install beyond `crewai-tools`. Ensure your selected LLM supports vision.
## Parameters
### Run Parameters
- `image_path_url` (str, required): Local image path or HTTP(S) URL.
## Examples
### Direct usage
```python Code
from crewai_tools import OCRTool
print(OCRTool().run(image_path_url="/tmp/receipt.png"))
```
### With an agent
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
ocr = OCRTool()
agent = Agent(
role="OCR",
goal="Extract text",
tools=[ocr],
)
task = Task(
description="Extract text from https://example.com/invoice.jpg",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Ensure the selected LLM supports image inputs.
- For large images, consider downscaling to reduce token usage.
- You can pass a specific LLM instance to the tool (e.g., `LLM(model="gpt-4o")`) if needed, matching the README guidance.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
tool = OCRTool()
agent = Agent(
role="OCR Specialist",
goal="Extract text from images",
backstory="Visionenabled analyst",
tools=[tool],
verbose=True,
)
task = Task(
description="Extract text from https://example.com/receipt.png",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```

View File

@@ -0,0 +1,77 @@
---
title: PDF Text Writing Tool
description: The `PDFTextWritingTool` writes text to specific positions in a PDF, supporting custom fonts.
icon: file-pdf
mode: "wide"
---
# `PDFTextWritingTool`
## Description
Write text at precise coordinates on a PDF page, optionally embedding a custom TrueType font.
## Parameters
### Run Parameters
- `pdf_path` (str, required): Path to the input PDF.
- `text` (str, required): Text to add.
- `position` (tuple[int, int], required): `(x, y)` coordinates.
- `font_size` (int, default `12`)
- `font_color` (str, default `"0 0 0 rg"`)
- `font_name` (str, default `"F1"`)
- `font_file` (str, optional): Path to `.ttf` file.
- `page_number` (int, default `0`)
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PDFTextWritingTool
tool = PDFTextWritingTool()
agent = Agent(
role="PDF Editor",
goal="Annotate PDFs",
backstory="Documentation specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Write 'CONFIDENTIAL' at (72, 720) on page 1 of ./sample.pdf",
expected_output="Confirmation message",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```
### Direct usage
```python Code
from crewai_tools import PDFTextWritingTool
PDFTextWritingTool().run(
pdf_path="./input.pdf",
text="CONFIDENTIAL",
position=(72, 720),
font_size=18,
page_number=0,
)
```
## Tips
- Coordinate origin is the bottomleft corner.
- If using a custom font (`font_file`), ensure it is a valid `.ttf`.

View File

@@ -0,0 +1,113 @@
---
title: Arxiv Paper Tool
description: The `ArxivPaperTool` searches arXiv for papers matching a query and optionally downloads PDFs.
icon: box-archive
mode: "wide"
---
# `ArxivPaperTool`
## Description
The `ArxivPaperTool` queries the arXiv API for academic papers and returns compact, readable results. It can also optionally download PDFs to disk.
## Installation
This tool has no special installation beyond `crewai-tools`.
```shell
uv add crewai-tools
```
No API key is required. This tool uses the public arXiv Atom API.
## Steps to Get Started
1. Initialize the tool.
2. Provide a `search_query` (e.g., "transformer neural network").
3. Optionally set `max_results` (1100) and enable PDF downloads in the constructor.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ArxivPaperTool
tool = ArxivPaperTool(
download_pdfs=False,
save_dir="./arxiv_pdfs",
use_title_as_filename=True,
)
agent = Agent(
role="Researcher",
goal="Find relevant arXiv papers",
backstory="Expert at literature discovery",
tools=[tool],
verbose=True,
)
task = Task(
description="Search arXiv for 'transformer neural network' and list top 5 results.",
expected_output="A concise list of 5 relevant papers with titles, links, and summaries.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
### Direct usage (without Agent)
```python Code
from crewai_tools import ArxivPaperTool
tool = ArxivPaperTool(
download_pdfs=True,
save_dir="./arxiv_pdfs",
)
print(tool.run(search_query="mixture of experts", max_results=3))
```
## Parameters
### Initialization Parameters
- `download_pdfs` (bool, default `False`): Whether to download PDFs.
- `save_dir` (str, default `./arxiv_pdfs`): Directory to save PDFs.
- `use_title_as_filename` (bool, default `False`): Use paper titles for filenames.
### Run Parameters
- `search_query` (str, required): The arXiv search query.
- `max_results` (int, default `5`, range 1100): Number of results.
## Output format
The tool returns a humanreadable list of papers with:
- Title
- Link (abs page)
- Snippet/summary (truncated)
When `download_pdfs=True`, PDFs are saved to disk and the summary mentions saved files.
## Usage Notes
- The tool returns formatted text with key metadata and links.
- When `download_pdfs=True`, PDFs will be stored in `save_dir`.
## Troubleshooting
- If you receive a network timeout, retry or reduce `max_results`.
- Invalid XML errors indicate an arXiv response parse issue; try a simpler query.
- File system errors (e.g., permission denied) may occur when saving PDFs; ensure `save_dir` is writable.
## Related links
- arXiv API docs: https://info.arxiv.org/help/api/index.html
## Error Handling
- Network issues, invalid XML, and OS errors are handled with informative messages.

View File

@@ -0,0 +1,81 @@
---
title: Databricks SQL Query Tool
description: The `DatabricksQueryTool` executes SQL queries against Databricks workspace tables.
icon: trowel-bricks
mode: "wide"
---
# `DatabricksQueryTool`
## Description
Run SQL against Databricks workspace tables with either CLI profile or direct host/token authentication.
## Installation
```shell
uv add crewai-tools[databricks-sdk]
```
## Environment Variables
- `DATABRICKS_CONFIG_PROFILE` or (`DATABRICKS_HOST` + `DATABRICKS_TOKEN`)
Create a personal access token and find host details in the Databricks workspace under User Settings → Developer.
Docs: https://docs.databricks.com/en/dev-tools/auth/pat.html
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import DatabricksQueryTool
tool = DatabricksQueryTool(
default_catalog="main",
default_schema="default",
)
agent = Agent(
role="Data Analyst",
goal="Query Databricks",
tools=[tool],
verbose=True,
)
task = Task(
description="SELECT * FROM my_table LIMIT 10",
expected_output="10 rows",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
## Parameters
- `query` (required): SQL query to execute
- `catalog` (optional): Override default catalog
- `db_schema` (optional): Override default schema
- `warehouse_id` (optional): Override default SQL warehouse
- `row_limit` (optional): Maximum rows to return (default: 1000)
## Defaults on initialization
- `default_catalog`
- `default_schema`
- `default_warehouse_id`
### Error handling & tips
- Authentication errors: verify `DATABRICKS_HOST` begins with `https://` and token is valid.
- Permissions: ensure your SQL warehouse and schema are accessible by your token.
- Limits: longrunning queries should be avoided in agent loops; add filters/limits.

View File

@@ -0,0 +1,66 @@
---
title: SerpApi Google Search Tool
description: The `SerpApiGoogleSearchTool` performs Google searches using the SerpApi service.
icon: google
mode: "wide"
---
# `SerpApiGoogleSearchTool`
## Description
Use the `SerpApiGoogleSearchTool` to run Google searches with SerpApi and retrieve structured results. Requires a SerpApi API key.
## Installation
```shell
uv add crewai-tools[serpapi]
```
## Environment Variables
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SerpApiGoogleSearchTool
tool = SerpApiGoogleSearchTool()
agent = Agent(
role="Researcher",
goal="Answer questions using Google search",
backstory="Search specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Search for the latest CrewAI releases",
expected_output="A concise list of relevant results with titles and links",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
- See also Google Shopping via SerpApi: `/en/tools/search-research/serpapi-googleshoppingtool`
## Parameters
### Run Parameters
- `search_query` (str, required): The Google query.
- `location` (str, optional): Geographic location parameter.
## Notes
- This tool wraps SerpApi and returns structured search results.

View File

@@ -0,0 +1,62 @@
---
title: SerpApi Google Shopping Tool
description: The `SerpApiGoogleShoppingTool` searches Google Shopping results using SerpApi.
icon: cart-shopping
mode: "wide"
---
# `SerpApiGoogleShoppingTool`
## Description
Leverage `SerpApiGoogleShoppingTool` to query Google Shopping via SerpApi and retrieve product-oriented results.
## Installation
```shell
uv add crewai-tools[serpapi]
```
## Environment Variables
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SerpApiGoogleShoppingTool
tool = SerpApiGoogleShoppingTool()
agent = Agent(
role="Shopping Researcher",
goal="Find relevant products",
backstory="Expert in product search",
tools=[tool],
verbose=True,
)
task = Task(
description="Search Google Shopping for 'wireless noise-canceling headphones'",
expected_output="Top relevant products with titles and links",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
- See also Google Web Search via SerpApi: `/en/tools/search-research/serpapi-googlesearchtool`
## Parameters
### Run Parameters
- `search_query` (str, required): Product search query.
- `location` (str, optional): Geographic location parameter.

View File

@@ -0,0 +1,140 @@
---
title: "Tavily Extractor Tool"
description: "Extract structured content from web pages using the Tavily API"
icon: square-poll-horizontal
mode: "wide"
---
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
## Installation
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
You also need to set your Tavily API key as an environment variable:
```bash
export TAVILY_API_KEY='your-tavily-api-key'
```
## Example Usage
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilyExtractorTool
# Ensure TAVILY_API_KEY is set in your environment
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
# Initialize the tool
tavily_tool = TavilyExtractorTool()
# Create an agent that uses the tool
extractor_agent = Agent(
role='Web Content Extractor',
goal='Extract key information from specified web pages',
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
tools=[tavily_tool],
verbose=True
)
# Define a task for the agent
extract_task = Task(
description='Extract the main content from the URL https://example.com using basic extraction depth.',
expected_output='A JSON string containing the extracted content from the URL.',
agent=extractor_agent
)
# Create and run the crew
crew = Crew(
agents=[extractor_agent],
tasks=[extract_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilyExtractorTool` accepts the following arguments:
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
## Advanced Usage
### Multiple URLs with Advanced Extraction
```python
# Example with multiple URLs and advanced extraction
multi_extract_task = Task(
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
expected_output='A JSON string containing the extracted content from both URLs.',
agent=extractor_agent
)
# Configure the tool with custom parameters
custom_extractor = TavilyExtractorTool(
extract_depth='advanced',
include_images=True,
timeout=120
)
agent_with_custom_tool = Agent(
role="Advanced Content Extractor",
goal="Extract comprehensive content with images",
tools=[custom_extractor]
)
```
### Tool Parameters
You can customize the tool's behavior by setting parameters during initialization:
```python
# Initialize with custom configuration
extractor_tool = TavilyExtractorTool(
extract_depth='advanced', # More comprehensive extraction
include_images=True, # Include image results
timeout=90 # Custom timeout
)
```
## Features
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
- **Image Support**: Optionally include images in the extraction results
- **Structured Output**: Returns well-formatted JSON containing the extracted content
- **Error Handling**: Robust handling of network timeouts and extraction errors
## Response Format
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
Common response elements include:
- **Title**: The page title
- **Content**: Main text content of the page
- **Images**: Image URLs and metadata (when `include_images=True`)
- **Metadata**: Additional page information like author, description, etc.
## Use Cases
- **Content Analysis**: Extract and analyze content from competitor websites
- **Research**: Gather structured data from multiple sources for analysis
- **Content Migration**: Extract content from existing websites for migration
- **Monitoring**: Regular extraction of content for change detection
- **Data Collection**: Systematic extraction of information from web sources
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.

View File

@@ -0,0 +1,125 @@
---
title: "Tavily Search Tool"
description: "Perform comprehensive web searches using the Tavily Search API"
icon: "magnifying-glass"
mode: "wide"
---
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
## Installation
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
## Environment Variables
Ensure your Tavily API key is set as an environment variable:
```bash
export TAVILY_API_KEY='your_tavily_api_key'
```
Get an API key at https://app.tavily.com/ (sign up, then create a key).
## Example Usage
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilySearchTool
# Ensure the TAVILY_API_KEY environment variable is set
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
# Initialize the tool
tavily_tool = TavilySearchTool()
# Create an agent that uses the tool
researcher = Agent(
role='Market Researcher',
goal='Find information about the latest AI trends',
backstory='An expert market researcher specializing in technology.',
tools=[tavily_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description='Search for the top 3 AI trends in 2024.',
expected_output='A JSON report summarizing the top 3 AI trends found.',
agent=researcher
)
# Form the crew and kick it off
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
- `query` (str): **Required**. The search query string.
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
## Advanced Usage
You can configure the tool with custom parameters:
```python
# Example: Initialize with specific parameters
custom_tavily_tool = TavilySearchTool(
search_depth='advanced',
max_results=10,
include_answer=True
)
# The agent will use these defaults
agent_with_custom_tool = Agent(
role="Advanced Researcher",
goal="Conduct detailed research with comprehensive results",
tools=[custom_tavily_tool]
)
```
## Features
- **Comprehensive Search**: Access to Tavily's powerful search index
- **Configurable Depth**: Choose between basic and advanced search modes
- **Topic Filtering**: Focus searches on general, news, or finance topics
- **Time Range Control**: Limit results to specific time periods
- **Domain Control**: Include or exclude specific domains
- **Direct Answers**: Get synthesized answers from search results
- **Content Filtering**: Prevent context window issues with automatic content truncation
## Response Format
The tool returns search results as a JSON string containing:
- Search results with titles, URLs, and content snippets
- Optional direct answers to queries
- Optional image results
- Optional raw HTML content (when enabled)
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.

View File

@@ -0,0 +1,31 @@
---
title: Overview
description: Integrations for deploying and automating crews with external platforms
icon: face-smile
mode: "wide"
---
## Available Integrations
<CardGroup cols={2}>
<Card
title="Bedrock Invoke Agent Tool"
icon="cloud"
href="/en/tools/tool-integrations/bedrockinvokeagenttool"
color="#0891B2"
>
Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services.
</Card>
<Card
title="CrewAI Automation Tool"
icon="bolt"
href="/en/tools/tool-integrations/crewaiautomationtool"
color="#7C3AED"
>
Automate deployment and operations by integrating CrewAI with external platforms and workflows.
</Card>
</CardGroup>
Use these integrations to connect CrewAI with your infrastructure and workflows.

View File

@@ -0,0 +1,112 @@
---
title: Bright Data Tools
description: Bright Data integrations for SERP search, Web Unlocker scraping, and Dataset API.
icon: spider
mode: "wide"
---
# Bright Data Tools
This set of tools integrates Bright Data services for web extraction.
## Installation
```shell
uv add crewai-tools requests aiohttp
```
## Environment Variables
- `BRIGHT_DATA_API_KEY` (required)
- `BRIGHT_DATA_ZONE` (for SERP/Web Unlocker)
Create credentials at https://brightdata.com/ (sign up, then create an API token and zone).
See their docs: https://developers.brightdata.com/
## Included Tools
- `BrightDataSearchTool`: SERP search (Google/Bing/Yandex) with geo/language/device options.
- `BrightDataWebUnlockerTool`: Scrape pages with anti-bot bypass and rendering.
- `BrightDataDatasetTool`: Run Dataset API jobs and fetch results.
## Examples
### SERP Search
```python Code
from crewai_tools import BrightDataSearchTool
tool = BrightDataSearchTool(
query="CrewAI",
country="us",
)
print(tool.run())
```
### Web Unlocker
```python Code
from crewai_tools import BrightDataWebUnlockerTool
tool = BrightDataWebUnlockerTool(
url="https://example.com",
format="markdown",
)
print(tool.run(url="https://example.com"))
```
### Dataset API
```python Code
from crewai_tools import BrightDataDatasetTool
tool = BrightDataDatasetTool(
dataset_type="ecommerce",
url="https://example.com/product",
)
print(tool.run())
```
## Troubleshooting
- 401/403: verify `BRIGHT_DATA_API_KEY` and `BRIGHT_DATA_ZONE`.
- Empty/blocked content: enable rendering or try a different zone.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import BrightDataSearchTool
tool = BrightDataSearchTool(
query="CrewAI",
country="us",
)
agent = Agent(
role="Web Researcher",
goal="Search with Bright Data",
backstory="Finds reliable results",
tools=[tool],
verbose=True,
)
task = Task(
description="Search for CrewAI and summarize top results",
expected_output="Short summary with links",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -0,0 +1,101 @@
---
title: Serper Scrape Website
description: The `SerperScrapeWebsiteTool` is designed to scrape websites and extract clean, readable content using Serper's scraping API.
icon: globe
mode: "wide"
---
# `SerperScrapeWebsiteTool`
## Description
This tool is designed to scrape website content and extract clean, readable text from any website URL. It utilizes the [serper.dev](https://serper.dev) scraping API to fetch and process web pages, optionally including markdown formatting for better structure and readability.
## Installation
To effectively use the `SerperScrapeWebsiteTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for an account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Example
The following example demonstrates how to initialize the tool and scrape a website:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
# Initialize the tool for website scraping capabilities
tool = SerperScrapeWebsiteTool()
# Scrape a website with markdown formatting
result = tool.run(url="https://example.com", include_markdown=True)
```
## Arguments
The `SerperScrapeWebsiteTool` accepts the following arguments:
- **url**: Required. The URL of the website to scrape.
- **include_markdown**: Optional. Whether to include markdown formatting in the scraped content. Defaults to `True`.
## Example with Parameters
Here is an example demonstrating how to use the tool with different parameters:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
tool = SerperScrapeWebsiteTool()
# Scrape with markdown formatting (default)
markdown_result = tool.run(
url="https://docs.crewai.com",
include_markdown=True
)
# Scrape without markdown formatting for plain text
plain_result = tool.run(
url="https://docs.crewai.com",
include_markdown=False
)
print("Markdown formatted content:")
print(markdown_result)
print("\nPlain text content:")
print(plain_result)
```
## Use Cases
The `SerperScrapeWebsiteTool` is particularly useful for:
- **Content Analysis**: Extract and analyze website content for research purposes
- **Data Collection**: Gather structured information from web pages
- **Documentation Processing**: Convert web-based documentation into readable formats
- **Competitive Analysis**: Scrape competitor websites for market research
- **Content Migration**: Extract content from existing websites for migration purposes
## Error Handling
The tool includes comprehensive error handling for:
- **Network Issues**: Handles connection timeouts and network errors gracefully
- **API Errors**: Provides detailed error messages for API-related issues
- **Invalid URLs**: Validates and reports issues with malformed URLs
- **Authentication**: Clear error messages for missing or invalid API keys
## Security Considerations
- Always store your `SERPER_API_KEY` in environment variables, never hardcode it in your source code
- Be mindful of rate limits imposed by the Serper API
- Respect robots.txt and website terms of service when scraping content
- Consider implementing delays between requests for large-scale scraping operations