Add reasoning_interval and adaptive_reasoning features

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-05-26 17:32:47 +00:00
parent 22db4aae81
commit 9a2ddb39ce
6 changed files with 595 additions and 1 deletions

View File

@@ -0,0 +1,213 @@
"""Tests for reasoning interval and adaptive reasoning in agents."""
import json
import pytest
from unittest.mock import patch, MagicMock
from crewai import Agent, Task
from crewai.llm import LLM
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.utilities.reasoning_handler import AgentReasoning
@pytest.fixture
def mock_llm_responses():
"""Fixture for mock LLM responses."""
return {
"initial_reasoning": "I'll solve this task step by step.\n\nREADY: I am ready to execute the task.\n\n",
"mid_execution_reasoning": "Based on progress so far, I'll adjust my approach.\n\nREADY: I am ready to continue executing the task.",
"execution_step": "I'm working on the task...",
"final_result": "Task completed successfully."
}
def test_agent_with_reasoning_interval(mock_llm_responses):
"""Test agent with reasoning interval."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning interval feature",
backstory="I am a test agent created to verify the reasoning interval feature works correctly.",
llm=llm,
reasoning=True,
reasoning_interval=2, # Reason every 2 steps
verbose=True
)
task = Task(
description="Multi-step task that requires periodic reasoning.",
expected_output="The task should be completed with periodic reasoning.",
agent=agent
)
with patch('crewai.agent.Agent.create_agent_executor') as mock_create_executor:
mock_executor = MagicMock()
mock_executor._handle_mid_execution_reasoning = MagicMock()
mock_executor.invoke.return_value = mock_llm_responses["final_result"]
mock_create_executor.return_value = mock_executor
result = agent.execute_task(task)
assert result == mock_llm_responses["final_result"]
mock_executor._handle_mid_execution_reasoning.assert_called()
def test_agent_with_adaptive_reasoning(mock_llm_responses):
"""Test agent with adaptive reasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the adaptive reasoning feature",
backstory="I am a test agent created to verify the adaptive reasoning feature works correctly.",
llm=llm,
reasoning=True,
adaptive_reasoning=True,
verbose=True
)
task = Task(
description="Complex task that requires adaptive reasoning.",
expected_output="The task should be completed with adaptive reasoning.",
agent=agent
)
with patch('crewai.agent.Agent.create_agent_executor') as mock_create_executor:
mock_executor = MagicMock()
mock_executor._should_adaptive_reason = MagicMock(return_value=True)
mock_executor._handle_mid_execution_reasoning = MagicMock()
mock_executor.invoke.return_value = mock_llm_responses["final_result"]
mock_create_executor.return_value = mock_executor
result = agent.execute_task(task)
assert result == mock_llm_responses["final_result"]
mock_executor._should_adaptive_reason.assert_called()
mock_executor._handle_mid_execution_reasoning.assert_called()
def test_mid_execution_reasoning_handler():
"""Test the mid-execution reasoning handler."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the mid-execution reasoning handler",
backstory="I am a test agent created to verify the mid-execution reasoning handler works correctly.",
llm=llm,
reasoning=True,
verbose=True
)
task = Task(
description="Task to test mid-execution reasoning handler.",
expected_output="The mid-execution reasoning handler should work correctly.",
agent=agent
)
agent.llm.call = MagicMock(return_value="Based on progress, I'll adjust my approach.\n\nREADY: I am ready to continue executing the task.")
reasoning_handler = AgentReasoning(task=task, agent=agent)
result = reasoning_handler.handle_mid_execution_reasoning(
current_steps=3,
tools_used=["search_tool", "calculator_tool"],
current_progress="Made progress on steps 1-3",
iteration_messages=[
{"role": "assistant", "content": "I'll search for information."},
{"role": "system", "content": "Search results: ..."},
{"role": "assistant", "content": "I'll calculate the answer."},
{"role": "system", "content": "Calculation result: 42"}
]
)
assert result is not None
assert hasattr(result, 'plan')
assert hasattr(result.plan, 'plan')
assert hasattr(result.plan, 'ready')
assert result.plan.ready is True
def test_should_trigger_reasoning_interval():
"""Test the _should_trigger_reasoning method with interval-based reasoning."""
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = 3
agent.adaptive_reasoning = False
executor = CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
executor.steps_since_reasoning = 0
assert executor._should_trigger_reasoning() is False
executor.steps_since_reasoning = 2
assert executor._should_trigger_reasoning() is False
executor.steps_since_reasoning = 3
assert executor._should_trigger_reasoning() is True
executor.steps_since_reasoning = 4
assert executor._should_trigger_reasoning() is True
def test_should_trigger_adaptive_reasoning():
"""Test the _should_adaptive_reason method."""
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = None
agent.adaptive_reasoning = True
executor = CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
executor.tools_used = ["tool1", "tool2", "tool3"]
assert executor._should_adaptive_reason() is True
executor.tools_used = ["tool1", "tool1", "tool1"]
executor.iterations = 6 # > max_iter // 2
assert executor._should_adaptive_reason() is True
executor.tools_used = ["tool1", "tool1", "tool1"]
executor.iterations = 2
executor.messages = [
{"role": "assistant", "content": "I'll try this approach."},
{"role": "system", "content": "Error: Failed to execute the command."},
{"role": "assistant", "content": "Let me try something else."}
]
assert executor._should_adaptive_reason() is True
executor.tools_used = ["tool1", "tool1", "tool1"]
executor.iterations = 2
executor.messages = [
{"role": "assistant", "content": "I'll try this approach."},
{"role": "system", "content": "Command executed successfully."},
{"role": "assistant", "content": "Let me continue with the next step."}
]
assert executor._should_adaptive_reason() is False