feat: enable custom LLM support for Crew.test()

This PR enables the Crew.test() method to work with any LLM implementation through the LLM class while maintaining backward compatibility with the openai_model_name parameter.

Changes:
- Added new llm parameter to Crew.test() that accepts string or LLM instance
- Maintained backward compatibility with openai_model_name parameter
- Updated CrewEvaluator to handle any LLM implementation
- Added comprehensive test coverage for both new functionality and backward compatibility

Fixes #2078

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 22:29:06 +00:00
parent 409892d65f
commit 93ce2ae55d
4 changed files with 128 additions and 14 deletions

View File

@@ -14,6 +14,7 @@ from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
@@ -1123,7 +1124,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headeruvs=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -2814,8 +2815,8 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
description="Test task",
expected_output="Expected output",
agent=researcher,
)
@@ -2844,6 +2845,76 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
]
)
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_test_with_custom_llm(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Expected output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
custom_llm = LLM(model="gpt-4o-mini")
copy_mock.return_value = crew
crew.test(n_iterations=2, llm=custom_llm, inputs={"topic": "AI"})
kickoff_mock.assert_has_calls([
mock.call(inputs={"topic": "AI"}),
mock.call(inputs={"topic": "AI"})
])
crew_evaluator.assert_has_calls([
mock.call(crew, custom_llm),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
])
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_test_with_both_llm_and_model_name(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Expected output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
custom_llm = LLM(model="gpt-4o-mini")
copy_mock.return_value = crew
crew.test(n_iterations=2, llm=custom_llm, openai_model_name="gpt-4", inputs={"topic": "AI"})
kickoff_mock.assert_has_calls([
mock.call(inputs={"topic": "AI"}),
mock.call(inputs={"topic": "AI"})
])
# Should prioritize llm over openai_model_name
crew_evaluator.assert_has_calls([
mock.call(crew, custom_llm),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
])
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_test_with_no_llm_raises_error(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Expected output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
copy_mock.return_value = crew
with pytest.raises(ValueError, match="Either openai_model_name or llm must be provided"):
crew.test(n_iterations=2, inputs={"topic": "AI"})
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
@@ -3125,4 +3196,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response

View File

@@ -4,6 +4,7 @@ import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.evaluators.crew_evaluator_handler import (
@@ -23,7 +24,7 @@ class TestCrewEvaluator:
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
return CrewEvaluator(crew, "gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
@@ -140,3 +141,30 @@ class TestCrewEvaluator:
execute().pydantic = TaskEvaluationPydanticOutput(quality=9.5)
crew_planner.evaluate(task_output)
assert crew_planner.tasks_scores[0] == [9.5]
def test_crew_evaluator_with_custom_llm(self):
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(
description="Task 1",
expected_output="Output 1",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
custom_llm = LLM(model="gpt-4o-mini")
evaluator = CrewEvaluator(crew, custom_llm)
assert evaluator.llm == custom_llm
def test_crew_evaluator_with_model_name(self):
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(
description="Task 1",
expected_output="Output 1",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
model_name = "gpt-4o-mini"
evaluator = CrewEvaluator(crew, model_name)
assert isinstance(evaluator.llm, LLM)
assert evaluator.llm.model == model_name