mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
updating docs
This commit is contained in:
155
docs/core-concepts/LLMs.md
Normal file
155
docs/core-concepts/LLMs.md
Normal file
@@ -0,0 +1,155 @@
|
||||
# Large Language Models (LLMs) in crewAI
|
||||
|
||||
## Introduction
|
||||
Large Language Models (LLMs) are the backbone of intelligent agents in the crewAI framework. This guide will help you understand, configure, and optimize LLM usage for your crewAI projects.
|
||||
|
||||
## Table of Contents
|
||||
- [Key Concepts](#key-concepts)
|
||||
- [Configuring LLMs for Agents](#configuring-llms-for-agents)
|
||||
- [1. Default Configuration](#1-default-configuration)
|
||||
- [2. String Identifier](#2-string-identifier)
|
||||
- [3. LLM Instance](#3-llm-instance)
|
||||
- [4. Custom LLM Objects](#4-custom-llm-objects)
|
||||
- [Connecting to OpenAI-Compatible LLMs](#connecting-to-openai-compatible-llms)
|
||||
- [LLM Configuration Options](#llm-configuration-options)
|
||||
- [Using Ollama (Local LLMs)](#using-ollama-local-llms)
|
||||
- [Changing the Base API URL](#changing-the-base-api-url)
|
||||
- [Best Practices](#best-practices)
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Key Concepts
|
||||
- **LLM**: Large Language Model, the AI powering agent intelligence
|
||||
- **Agent**: A crewAI entity that uses an LLM to perform tasks
|
||||
- **Provider**: A service that offers LLM capabilities (e.g., OpenAI, Anthropic, Ollama, [more providers](https://docs.litellm.ai/docs/providers))
|
||||
|
||||
## Configuring LLMs for Agents
|
||||
|
||||
crewAI offers flexible options for setting up LLMs:
|
||||
|
||||
### 1. Default Configuration
|
||||
By default, crewAI uses the `gpt-4o-mini` model. It uses environment variables if no LLM is specified:
|
||||
- `OPENAI_MODEL_NAME` (defaults to "gpt-4o-mini" if not set)
|
||||
- `OPENAI_API_BASE`
|
||||
- `OPENAI_API_KEY`
|
||||
|
||||
### 2. String Identifier
|
||||
```python
|
||||
agent = Agent(llm="gpt-4o", ...)
|
||||
```
|
||||
|
||||
### 3. LLM Instance
|
||||
List of [more providers](https://docs.litellm.ai/docs/providers).
|
||||
```python
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(model="gpt-4", temperature=0.7)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
### 4. Custom LLM Objects
|
||||
Pass a custom LLM implementation or object from another library.
|
||||
|
||||
## Connecting to OpenAI-Compatible LLMs
|
||||
|
||||
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
|
||||
|
||||
1. Using environment variables:
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
|
||||
```
|
||||
|
||||
2. Using LLM class attributes:
|
||||
```python
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
api_key="your-api-key",
|
||||
base_url="https://api.your-provider.com/v1"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
## LLM Configuration Options
|
||||
|
||||
When configuring an LLM for your agent, you have access to a wide range of parameters:
|
||||
|
||||
| Parameter | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `model` | str | The name of the model to use (e.g., "gpt-4", "gpt-3.5-turbo", "ollama/llama3.1", [more providers](https://docs.litellm.ai/docs/providers)) |
|
||||
| `timeout` | float, int | Maximum time (in seconds) to wait for a response |
|
||||
| `temperature` | float | Controls randomness in output (0.0 to 1.0) |
|
||||
| `top_p` | float | Controls diversity of output (0.0 to 1.0) |
|
||||
| `n` | int | Number of completions to generate |
|
||||
| `stop` | str, List[str] | Sequence(s) to stop generation |
|
||||
| `max_tokens` | int | Maximum number of tokens to generate |
|
||||
| `presence_penalty` | float | Penalizes new tokens based on their presence in the text so far |
|
||||
| `frequency_penalty` | float | Penalizes new tokens based on their frequency in the text so far |
|
||||
| `logit_bias` | Dict[int, float] | Modifies likelihood of specified tokens appearing in the completion |
|
||||
| `response_format` | Dict[str, Any] | Specifies the format of the response (e.g., {"type": "json_object"}) |
|
||||
| `seed` | int | Sets a random seed for deterministic results |
|
||||
| `logprobs` | bool | Whether to return log probabilities of the output tokens |
|
||||
| `top_logprobs` | int | Number of most likely tokens to return the log probabilities for |
|
||||
| `base_url` | str | The base URL for the API endpoint |
|
||||
| `api_version` | str | The version of the API to use |
|
||||
| `api_key` | str | Your API key for authentication |
|
||||
|
||||
Example:
|
||||
```python
|
||||
llm = LLM(
|
||||
model="gpt-4",
|
||||
temperature=0.8,
|
||||
max_tokens=150,
|
||||
top_p=0.9,
|
||||
frequency_penalty=0.1,
|
||||
presence_penalty=0.1,
|
||||
stop=["END"],
|
||||
seed=42,
|
||||
base_url="https://api.openai.com/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
## Using Ollama (Local LLMs)
|
||||
|
||||
crewAI supports using Ollama for running open-source models locally:
|
||||
|
||||
1. Install Ollama: [ollama.ai](https://ollama.ai/)
|
||||
2. Run a model: `ollama run llama2`
|
||||
3. Configure agent:
|
||||
```python
|
||||
agent = Agent(
|
||||
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
## Changing the Base API URL
|
||||
|
||||
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
|
||||
|
||||
```python
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
base_url="https://api.your-provider.com/v1",
|
||||
api_key="your-api-key"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
|
||||
|
||||
## Best Practices
|
||||
1. **Choose the right model**: Balance capability and cost.
|
||||
2. **Optimize prompts**: Clear, concise instructions improve output.
|
||||
3. **Manage tokens**: Monitor and limit token usage for efficiency.
|
||||
4. **Use appropriate temperature**: Lower for factual tasks, higher for creative ones.
|
||||
5. **Implement error handling**: Gracefully manage API errors and rate limits.
|
||||
|
||||
## Troubleshooting
|
||||
- **API Errors**: Check your API key, network connection, and rate limits.
|
||||
- **Unexpected Outputs**: Refine your prompts and adjust temperature or top_p.
|
||||
- **Performance Issues**: Consider using a more powerful model or optimizing your queries.
|
||||
- **Timeout Errors**: Increase the `timeout` parameter or optimize your input.
|
||||
Reference in New Issue
Block a user