mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-28 17:48:13 +00:00
Update inner tool usage logic to support both regular and function calling
This commit is contained in:
@@ -27,6 +27,7 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
request_within_rpm_limit: Any = None
|
||||
tools_handler: InstanceOf[ToolsHandler] = None
|
||||
max_iterations: Optional[int] = 15
|
||||
have_forced_answer: bool = False
|
||||
force_answer_max_iterations: Optional[int] = None
|
||||
step_callback: Optional[Any] = None
|
||||
|
||||
@@ -36,7 +37,9 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
return values
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
return True if self.iterations == self.force_answer_max_iterations else False
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _call(
|
||||
self,
|
||||
@@ -103,6 +106,13 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
try:
|
||||
if self._should_force_answer():
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
self.have_forced_answer = True
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
@@ -111,23 +121,6 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
**inputs,
|
||||
)
|
||||
|
||||
if self._should_force_answer():
|
||||
if isinstance(output, AgentFinish):
|
||||
yield output
|
||||
return
|
||||
|
||||
if isinstance(output, AgentAction):
|
||||
output = output
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unexpected output type from agent: {type(output)}"
|
||||
)
|
||||
|
||||
yield AgentStep(
|
||||
action=output, observation=self._i18n.errors("force_final_answer")
|
||||
)
|
||||
return
|
||||
|
||||
except OutputParserException as e:
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
raise_error = not self.handle_parsing_errors
|
||||
@@ -140,11 +133,11 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
|
||||
f"This is the error: {str(e)}"
|
||||
)
|
||||
text = str(e)
|
||||
str(e)
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
if e.send_to_llm:
|
||||
observation = f"\n{str(e.observation)}"
|
||||
text = str(e.llm_output)
|
||||
str(e.llm_output)
|
||||
else:
|
||||
observation = ""
|
||||
elif isinstance(self.handle_parsing_errors, str):
|
||||
@@ -153,22 +146,22 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
observation = f"\n{self.handle_parsing_errors(e)}"
|
||||
else:
|
||||
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
||||
output = AgentAction("_Exception", observation, text)
|
||||
output = AgentAction("_Exception", observation, "")
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(output, color="green")
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = ExceptionTool().run(
|
||||
output.tool_input,
|
||||
verbose=self.verbose,
|
||||
verbose=False,
|
||||
color=None,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
|
||||
if self._should_force_answer():
|
||||
yield AgentStep(
|
||||
action=output, observation=self._i18n.errors("force_final_answer")
|
||||
)
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
yield AgentStep(action=output, observation=observation)
|
||||
@@ -192,8 +185,8 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
llm=self.llm,
|
||||
task=self.task,
|
||||
action=agent_action,
|
||||
)
|
||||
tool_calling = tool_usage.parse(agent_action.log)
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
@@ -6,13 +7,14 @@ from langchain_core.exceptions import OutputParserException
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
TOOL_USAGE_SECTION = "Use Tool:"
|
||||
FINAL_ANSWER_ACTION = "Final Answer:"
|
||||
FINAL_ANSWER_AND_TOOL_ERROR_MESSAGE = "I tried to use a tool and give a final answer at the same time, I must choose only one."
|
||||
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
|
||||
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
|
||||
|
||||
|
||||
class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
"""Parses Crew-style LLM calls that have a single tool input.
|
||||
"""Parses ReAct-style LLM calls that have a single tool input.
|
||||
|
||||
Expects output to be in one of two formats.
|
||||
|
||||
@@ -20,17 +22,16 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
should be in the below format. This will result in an AgentAction
|
||||
being returned.
|
||||
|
||||
```
|
||||
Use Tool: All context for using the tool here
|
||||
```
|
||||
Thought: agent thought here
|
||||
Action: search
|
||||
Action Input: what is the temperature in SF?
|
||||
|
||||
If the output signals that a final answer should be given,
|
||||
should be in the below format. This will result in an AgentFinish
|
||||
being returned.
|
||||
|
||||
```
|
||||
Thought: agent thought here
|
||||
Final Answer: The temperature is 100 degrees
|
||||
```
|
||||
"""
|
||||
|
||||
_i18n: I18N = I18N()
|
||||
@@ -38,26 +39,52 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
includes_answer = FINAL_ANSWER_ACTION in text
|
||||
includes_tool = TOOL_USAGE_SECTION in text
|
||||
|
||||
if includes_tool:
|
||||
regex = (
|
||||
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
||||
)
|
||||
action_match = re.search(regex, text, re.DOTALL)
|
||||
if action_match:
|
||||
if includes_answer:
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(f"{FINAL_ANSWER_AND_TOOL_ERROR_MESSAGE}")
|
||||
raise OutputParserException(
|
||||
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
|
||||
)
|
||||
action = action_match.group(1).strip()
|
||||
action_input = action_match.group(2)
|
||||
tool_input = action_input.strip(" ")
|
||||
tool_input = tool_input.strip('"')
|
||||
|
||||
return AgentAction("", "", text)
|
||||
return AgentAction(action, tool_input, text)
|
||||
|
||||
elif includes_answer:
|
||||
return AgentFinish(
|
||||
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
|
||||
)
|
||||
|
||||
format = self._i18n.slice("format_without_tools")
|
||||
error = f"{format}"
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
error,
|
||||
observation=error,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
elif not re.search(
|
||||
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
|
||||
):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
else:
|
||||
format = self._i18n.slice("format_without_tools")
|
||||
error = f"{format}"
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
error,
|
||||
observation=error,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user