mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Removes model provider defaults from LLM Setup (#2766)
This removes any specific model from the "Setting up your LLM" guide, but provides examples for the top-3 providers. This section also conflated "model selection" with "model configuration", where configuration is provider-specific, so I've focused this first section on just model selection, deferring the config to the "provider" section that follows. Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
This commit is contained in:
@@ -27,23 +27,19 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Setting Up Your LLM
|
||||
## Setting up your LLM
|
||||
|
||||
There are three ways to configure LLMs in CrewAI. Choose the method that best fits your workflow:
|
||||
There are different places in CrewAI code where you can specify the model to use. Once you specify the model you are using, you will need to provide the configuration (like an API key) for each of the model providers you use. See the [provider configuration examples](#provider-configuration-examples) section for your provider.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="1. Environment Variables">
|
||||
The simplest way to get started. Set these variables in your environment:
|
||||
The simplest way to get started. Set the model in your environment directly, through an `.env` file or in your app code. If you used `crewai create` to bootstrap your project, it will be set already.
|
||||
|
||||
```bash
|
||||
# Required: Your API key for authentication
|
||||
OPENAI_API_KEY=<your-api-key>
|
||||
```bash .env
|
||||
MODEL=model-id # e.g. gpt-4o, gemini-2.0-flash, claude-3-sonnet-...
|
||||
|
||||
# Optional: Default model selection
|
||||
OPENAI_MODEL_NAME=gpt-4o-mini # Default if not set
|
||||
|
||||
# Optional: Organization ID (if applicable)
|
||||
OPENAI_ORGANIZATION_ID=<your-org-id>
|
||||
# Be sure to set your API keys here too. See the Provider
|
||||
# section below.
|
||||
```
|
||||
|
||||
<Warning>
|
||||
@@ -53,13 +49,13 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
<Tab title="2. YAML Configuration">
|
||||
Create a YAML file to define your agent configurations. This method is great for version control and team collaboration:
|
||||
|
||||
```yaml
|
||||
```yaml agents.yaml {6}
|
||||
researcher:
|
||||
role: Research Specialist
|
||||
goal: Conduct comprehensive research and analysis
|
||||
backstory: A dedicated research professional with years of experience
|
||||
verbose: true
|
||||
llm: openai/gpt-4o-mini # your model here
|
||||
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
|
||||
# (see provider configuration examples below for more)
|
||||
```
|
||||
|
||||
@@ -74,20 +70,20 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
<Tab title="3. Direct Code">
|
||||
For maximum flexibility, configure LLMs directly in your Python code:
|
||||
|
||||
```python
|
||||
```python {4,8}
|
||||
from crewai import LLM
|
||||
|
||||
# Basic configuration
|
||||
llm = LLM(model="gpt-4")
|
||||
llm = LLM(model="model-id-here") # gpt-4o, gemini-2.0-flash, anthropic/claude...
|
||||
|
||||
# Advanced configuration with detailed parameters
|
||||
llm = LLM(
|
||||
model="gpt-4o-mini",
|
||||
model="model-id-here", # gpt-4o, gemini-2.0-flash, anthropic/claude...
|
||||
temperature=0.7, # Higher for more creative outputs
|
||||
timeout=120, # Seconds to wait for response
|
||||
max_tokens=4000, # Maximum length of response
|
||||
top_p=0.9, # Nucleus sampling parameter
|
||||
frequency_penalty=0.1, # Reduce repetition
|
||||
frequency_penalty=0.1 , # Reduce repetition
|
||||
presence_penalty=0.1, # Encourage topic diversity
|
||||
response_format={"type": "json"}, # For structured outputs
|
||||
seed=42 # For reproducible results
|
||||
@@ -110,7 +106,6 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
|
||||
## Provider Configuration Examples
|
||||
|
||||
|
||||
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
|
||||
In this section, you'll find detailed examples that help you select, configure, and optimize the LLM that best fits your project's needs.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user