whitespace consistency across docs (#407)

I saw a rendedered whitespace inconsistency in the Tasks docs here:
c87d887efc/docs/core-concepts/Tasks.md (L173)

So I set out to patch that up to make it easier to read.  I then noticed
there were a few whitespace inconsistencies:
- 2 spaces
- 4 whitespaces
- tabs

It appears that the 4 whitespaces is the prevalent whitesapce usage, so
I overwrote other whitespace usages with that in this commit.

Co-authored-by: Rueben Ramirez <rramirez@ruebens-mbp.tail7c016.ts.net>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
This commit is contained in:
Rueben Ramirez
2024-04-05 17:47:09 -05:00
committed by GitHub
parent 289e12de5a
commit 80c1b6a2ee
2 changed files with 51 additions and 51 deletions

View File

@@ -96,26 +96,26 @@ This is useful when you have a task that depends on the output of another task t
# ... # ...
research_ai_task = Task( research_ai_task = Task(
description='Find and summarize the latest AI news', description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news', expected_output='A bullet list summary of the top 5 most important AI news',
async_execution=True, async_execution=True,
agent=research_agent, agent=research_agent,
tools=[search_tool] tools=[search_tool]
) )
research_ops_task = Task( research_ops_task = Task(
description='Find and summarize the latest AI Ops news', description='Find and summarize the latest AI Ops news',
expected_output='A bullet list summary of the top 5 most important AI Ops news', expected_output='A bullet list summary of the top 5 most important AI Ops news',
async_execution=True, async_execution=True,
agent=research_agent, agent=research_agent,
tools=[search_tool] tools=[search_tool]
) )
write_blog_task = Task( write_blog_task = Task(
description="Write a full blog post about the importance of AI and its latest news", description="Write a full blog post about the importance of AI and its latest news",
expected_output='Full blog post that is 4 paragraphs long', expected_output='Full blog post that is 4 paragraphs long',
agent=writer_agent, agent=writer_agent,
context=[research_ai_task, research_ops_task] context=[research_ai_task, research_ops_task]
) )
#... #...
@@ -131,24 +131,24 @@ You can then use the `context` attribute to define in a future task that it shou
#... #...
list_ideas = Task( list_ideas = Task(
description="List of 5 interesting ideas to explore for an article about AI.", description="List of 5 interesting ideas to explore for an article about AI.",
expected_output="Bullet point list of 5 ideas for an article.", expected_output="Bullet point list of 5 ideas for an article.",
agent=researcher, agent=researcher,
async_execution=True # Will be executed asynchronously async_execution=True # Will be executed asynchronously
) )
list_important_history = Task( list_important_history = Task(
description="Research the history of AI and give me the 5 most important events.", description="Research the history of AI and give me the 5 most important events.",
expected_output="Bullet point list of 5 important events.", expected_output="Bullet point list of 5 important events.",
agent=researcher, agent=researcher,
async_execution=True # Will be executed asynchronously async_execution=True # Will be executed asynchronously
) )
write_article = Task( write_article = Task(
description="Write an article about AI, its history, and interesting ideas.", description="Write an article about AI, its history, and interesting ideas.",
expected_output="A 4 paragraph article about AI.", expected_output="A 4 paragraph article about AI.",
agent=writer, agent=writer,
context=[list_ideas, list_important_history] # Will wait for the output of the two tasks to be completed context=[list_ideas, list_important_history] # Will wait for the output of the two tasks to be completed
) )
#... #...
@@ -162,20 +162,20 @@ The callback function is executed after the task is completed, allowing for acti
# ... # ...
def callback_function(output: TaskOutput): def callback_function(output: TaskOutput):
# Do something after the task is completed # Do something after the task is completed
# Example: Send an email to the manager # Example: Send an email to the manager
print(f""" print(f"""
Task completed! Task completed!
Task: {output.description} Task: {output.description}
Output: {output.raw_output} Output: {output.raw_output}
""") """)
research_task = Task( research_task = Task(
description='Find and summarize the latest AI news', description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news', expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent, agent=research_agent,
tools=[search_tool], tools=[search_tool],
callback=callback_function callback=callback_function
) )
#... #...
@@ -188,27 +188,27 @@ Once a crew finishes running, you can access the output of a specific task by us
```python ```python
# ... # ...
task1 = Task( task1 = Task(
description='Find and summarize the latest AI news', description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news', expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent, agent=research_agent,
tools=[search_tool] tools=[search_tool]
) )
#... #...
crew = Crew( crew = Crew(
agents=[research_agent], agents=[research_agent],
tasks=[task1, task2, task3], tasks=[task1, task2, task3],
verbose=2 verbose=2
) )
result = crew.kickoff() result = crew.kickoff()
# Returns a TaskOutput object with the description and results of the task # Returns a TaskOutput object with the description and results of the task
print(f""" print(f"""
Task completed! Task completed!
Task: {task1.output.description} Task: {task1.output.description}
Output: {task1.output.raw_output} Output: {task1.output.raw_output}
""") """)
``` ```

View File

@@ -22,15 +22,15 @@ from crewai_tools import GithubSearchTool
# Initialize the tool for semantic searches within a specific GitHub repository # Initialize the tool for semantic searches within a specific GitHub repository
tool = GithubSearchTool( tool = GithubSearchTool(
github_repo='https://github.com/example/repo', github_repo='https://github.com/example/repo',
content_types=['code', 'issue'] # Options: code, repo, pr, issue content_types=['code', 'issue'] # Options: code, repo, pr, issue
) )
# OR # OR
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution # Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
tool = GithubSearchTool( tool = GithubSearchTool(
content_types=['code', 'issue'] # Options: code, repo, pr, issue content_types=['code', 'issue'] # Options: code, repo, pr, issue
) )
``` ```