fix: correct code example language inconsistency in pt-BR docs (#3088)

* fix: correct code example language inconsistency in pt-BR docs

* fix: fix: fully standardize code example language and naming in pt-BR docs

* fix: fix: fully standardize code example language and naming in pt-BR docs fixed variables

* fix: fix: fully standardize code example language and naming in pt-BR docs fixed params

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
This commit is contained in:
Irineu Brito
2025-07-02 12:18:32 -04:00
committed by GitHub
parent ceb310bcde
commit 7f83947020
37 changed files with 545 additions and 634 deletions

View File

@@ -149,34 +149,33 @@ from crewai_tools import SerperDevTool
# Crie um agente com todos os parâmetros disponíveis
agent = Agent(
role="Senior Data Scientist",
goal="Analyze and interpret complex datasets to provide actionable insights",
backstory="With over 10 years of experience in data science and machine learning, "
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
max_rpm=None, # Optional: Rate limit for API calls
max_execution_time=None, # Optional: Maximum execution time in seconds
max_retry_limit=2, # Default: 2 retries on error
allow_code_execution=False, # Default: False
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
respect_context_window=True, # Default: True
use_system_prompt=True, # Default: True
multimodal=False, # Default: False
inject_date=False, # Default: False
date_format="%Y-%m-%d", # Default: ISO format
reasoning=False, # Default: False
max_reasoning_attempts=None, # Default: None
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template
step_callback=None, # Optional: Callback function for monitoring
role="Cientista de Dados Sênior",
goal="Analisar e interpretar conjuntos de dados complexos para fornecer insights acionáveis",
backstory="Com mais de 10 anos de experiência em ciência de dados e aprendizado de máquina, você é especialista em encontrar padrões em grandes volumes de dados.",
llm="gpt-4", # Padrão: OPENAI_MODEL_NAME ou "gpt-4"
function_calling_llm=None, # Opcional: LLM separado para chamadas de ferramentas
verbose=False, # Padrão: False
allow_delegation=False, # Padrão: False
max_iter=20, # Padrão: 20 iterações
max_rpm=None, # Opcional: Limite de requisições por minuto
max_execution_time=None, # Opcional: Tempo máximo de execução em segundos
max_retry_limit=2, # Padrão: 2 tentativas em caso de erro
allow_code_execution=False, # Padrão: False
code_execution_mode="safe", # Padrão: "safe" (opções: "safe", "unsafe")
respect_context_window=True, # Padrão: True
use_system_prompt=True, # Padrão: True
multimodal=False, # Padrão: False
inject_date=False, # Padrão: False
date_format="%Y-%m-%d", # Padrão: formato ISO
reasoning=False, # Padrão: False
max_reasoning_attempts=None, # Padrão: None
tools=[SerperDevTool()], # Opcional: Lista de ferramentas
knowledge_sources=None, # Opcional: Lista de fontes de conhecimento
embedder=None, # Opcional: Configuração de embedder customizado
system_template=None, # Opcional: Template de prompt de sistema
prompt_template=None, # Opcional: Template de prompt customizado
response_template=None, # Opcional: Template de resposta customizado
step_callback=None, # Opcional: Função de callback para monitoramento
)
```
@@ -185,65 +184,62 @@ Vamos detalhar algumas combinações de parâmetros-chave para casos de uso comu
#### Agente de Pesquisa Básico
```python Code
research_agent = Agent(
role="Research Analyst",
goal="Find and summarize information about specific topics",
backstory="You are an experienced researcher with attention to detail",
role="Analista de Pesquisa",
goal="Encontrar e resumir informações sobre tópicos específicos",
backstory="Você é um pesquisador experiente com atenção aos detalhes",
tools=[SerperDevTool()],
verbose=True # Enable logging for debugging
verbose=True # Ativa logs para depuração
)
```
#### Agente de Desenvolvimento de Código
```python Code
dev_agent = Agent(
role="Senior Python Developer",
goal="Write and debug Python code",
backstory="Expert Python developer with 10 years of experience",
role="Desenvolvedor Python Sênior",
goal="Escrever e depurar códigos Python",
backstory="Desenvolvedor Python especialista com 10 anos de experiência",
allow_code_execution=True,
code_execution_mode="safe", # Uses Docker for safety
max_execution_time=300, # 5-minute timeout
max_retry_limit=3 # More retries for complex code tasks
code_execution_mode="safe", # Usa Docker para segurança
max_execution_time=300, # Limite de 5 minutos
max_retry_limit=3 # Mais tentativas para tarefas complexas
)
```
#### Agente de Análise de Longa Duração
```python Code
analysis_agent = Agent(
role="Data Analyst",
goal="Perform deep analysis of large datasets",
backstory="Specialized in big data analysis and pattern recognition",
role="Analista de Dados",
goal="Realizar análise aprofundada de grandes conjuntos de dados",
backstory="Especialista em análise de big data e reconhecimento de padrões",
memory=True,
respect_context_window=True,
max_rpm=10, # Limit API calls
function_calling_llm="gpt-4o-mini" # Cheaper model for tool calls
max_rpm=10, # Limite de requisições por minuto
function_calling_llm="gpt-4o-mini" # Modelo mais econômico para chamadas de ferramentas
)
```
#### Agente com Template Personalizado
```python Code
custom_agent = Agent(
role="Customer Service Representative",
goal="Assist customers with their inquiries",
backstory="Experienced in customer support with a focus on satisfaction",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
role="Atendente de Suporte ao Cliente",
goal="Auxiliar clientes com suas dúvidas e solicitações",
backstory="Experiente em atendimento ao cliente com foco em satisfação",
system_template="""<|start_header_id|>system<|end_header_id|>\n {{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>\n {{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>\n {{ .Response }}<|eot_id|>""",
)
```
#### Agente Ciente de Data, com Raciocínio
```python Code
strategic_agent = Agent(
role="Market Analyst",
goal="Track market movements with precise date references and strategic planning",
backstory="Expert in time-sensitive financial analysis and strategic reporting",
inject_date=True, # Automatically inject current date into tasks
date_format="%B %d, %Y", # Format as "May 21, 2025"
reasoning=True, # Enable strategic planning
max_reasoning_attempts=2, # Limit planning iterations
role="Analista de Mercado",
goal="Acompanhar movimentos do mercado com referências de datas precisas e planejamento estratégico",
backstory="Especialista em análise financeira sensível ao tempo e relatórios estratégicos",
inject_date=True, # Injeta automaticamente a data atual nas tarefas
date_format="%d de %B de %Y", # Exemplo: "21 de maio de 2025"
reasoning=True, # Ativa planejamento estratégico
max_reasoning_attempts=2, # Limite de iterações de planejamento
verbose=True
)
```
@@ -251,12 +247,12 @@ strategic_agent = Agent(
#### Agente de Raciocínio
```python Code
reasoning_agent = Agent(
role="Strategic Planner",
goal="Analyze complex problems and create detailed execution plans",
backstory="Expert strategic planner who methodically breaks down complex challenges",
reasoning=True, # Enable reasoning and planning
max_reasoning_attempts=3, # Limit reasoning attempts
max_iter=30, # Allow more iterations for complex planning
role="Planejador Estratégico",
goal="Analisar problemas complexos e criar planos de execução detalhados",
backstory="Especialista em planejamento estratégico que desmembra desafios complexos metodicamente",
reasoning=True, # Ativa raciocínio e planejamento
max_reasoning_attempts=3, # Limite de tentativas de raciocínio
max_iter=30, # Permite mais iterações para planejamento complexo
verbose=True
)
```
@@ -264,10 +260,10 @@ reasoning_agent = Agent(
#### Agente Multimodal
```python Code
multimodal_agent = Agent(
role="Visual Content Analyst",
goal="Analyze and process both text and visual content",
backstory="Specialized in multimodal analysis combining text and image understanding",
multimodal=True, # Enable multimodal capabilities
role="Analista de Conteúdo Visual",
goal="Analisar e processar tanto conteúdo textual quanto visual",
backstory="Especialista em análise multimodal combinando compreensão de texto e imagem",
multimodal=True, # Ativa capacidades multimodais
verbose=True
)
```
@@ -336,8 +332,8 @@ wiki_tool = WikipediaTools()
# Adicionar ferramentas ao agente
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
role="Pesquisador de Tecnologia em IA",
goal="Pesquisar os últimos avanços em IA",
tools=[search_tool, wiki_tool],
verbose=True
)
@@ -351,9 +347,9 @@ Agentes podem manter a memória de suas interações e usar contexto de tarefas
from crewai import Agent
analyst = Agent(
role="Data Analyst",
goal="Analyze and remember complex data patterns",
memory=True, # Enable memory
role="Analista de Dados",
goal="Analisar e memorizar padrões complexos de dados",
memory=True, # Ativa memória
verbose=True
)
```
@@ -380,10 +376,10 @@ Esta é a **configuração padrão e recomendada** para a maioria dos casos. Qua
```python Code
# Agente com gerenciamento automático de contexto (padrão)
smart_agent = Agent(
role="Research Analyst",
goal="Analyze large documents and datasets",
backstory="Expert at processing extensive information",
respect_context_window=True, # 🔑 Default: auto-handle context limits
role="Analista de Pesquisa",
goal="Analisar grandes documentos e conjuntos de dados",
backstory="Especialista em processar informações extensas",
respect_context_window=True, # 🔑 Padrão: gerencia limites de contexto automaticamente
verbose=True
)
```