fix missing code in flows docs (#1690)

* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
This commit is contained in:
Tony Kipkemboi
2024-12-03 10:02:06 -05:00
committed by GitHub
parent f8a8e7b2a5
commit 7d9d0ff6f7

View File

@@ -18,63 +18,60 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
### Passing Inputs to Flows
```python Code
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
#### Structured State Management
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
from dotenv import load_dotenv
from litellm import completion
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
class ExampleFlow(Flow):
model = "gpt-4o-mini"
@start()
def first_method(self):
# Implementation
def generate_city(self):
print("Starting flow")
flow = StructuredExampleFlow()
flow.kickoff(inputs={"counter": 10})
```
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": "Return the name of a random city in the world.",
},
],
)
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
random_city = response["choices"][0]["message"]["content"]
print(f"Random City: {random_city}")
#### Unstructured State Management
return random_city
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
@listen(generate_city)
def generate_fun_fact(self, random_city):
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": f"Tell me a fun fact about {random_city}",
},
],
)
```python
from crewai.flow.flow import Flow, listen, start
fun_fact = response["choices"][0]["message"]["content"]
return fun_fact
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# Implementation
flow = UnstructuredExampleFlow()
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
```
Here, both `counter` and `message` are updated based on the provided inputs.
flow = ExampleFlow()
result = flow.kickoff()
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
### Example Flow
```python
# Existing example code
print(f"Generated fun fact: {result}")
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -97,14 +94,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
```python
```python Code
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
```python
```python Code
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -121,7 +118,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -133,17 +130,18 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
```
````
```text
``` text Output
---- Final Output ----
Second method received: Output from first_method
```
````
</CodeGroup>
@@ -158,7 +156,7 @@ Here's an example of how to update and access the state:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -186,7 +184,7 @@ print("Final State:")
print(flow.state)
```
```text
```text Output
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -210,10 +208,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
class UntructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -232,7 +230,8 @@ class UnstructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UnstructuredExampleFlow()
flow = UntructuredExampleFlow()
flow.kickoff()
```
@@ -246,14 +245,16 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -272,6 +273,7 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -305,7 +307,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -322,11 +324,13 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
flow = OrExampleFlow()
flow.kickoff()
```
```text
```text Output
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -342,7 +346,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -364,7 +368,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
```text
```text Output
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -381,7 +385,7 @@ You can specify different routes based on the output of the method, allowing you
<CodeGroup>
```python
```python Code
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -412,11 +416,12 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
flow = RouterFlow()
flow.kickoff()
```
```text
```text Output
Starting the structured flow
Third method running
Fourth method running
@@ -479,7 +484,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python
```python Code
#!/usr/bin/env python
from random import randint
@@ -555,42 +560,6 @@ uv run kickoff
The flow will execute, and you should see the output in the console.
### Adding Additional Crews Using the CLI
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
To add a new crew to your existing flow, use the following command:
```bash
crewai flow add-crew <crew_name>
```
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
#### Folder Structure
After adding a new crew, your folder structure will look like this:
| Directory/File | Description |
| :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. |
| │ ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ │ │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| │ │ └── `poem_crew.py` | Script for "poem_crew" functionality. |
| └── `name_of_crew/` | Directory for the new crew. |
| ├── `config/` | Configuration files directory for the new crew. |
| │ ├── `agents.yaml` | YAML file defining the agents for the new crew. |
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
| └── `name_of_crew.py` | Script for the new crew functionality. |
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
## Plot Flows
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
@@ -607,7 +576,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
```python
```python Code
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```
@@ -630,114 +599,13 @@ The generated plot will display nodes representing the tasks in your flow, with
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
### Conclusion
## Advanced
In this section, we explore more complex use cases of CrewAI Flows, starting with a self-evaluation loop. This pattern is crucial for developing AI systems that can iteratively improve their outputs through feedback.
### 1) Self-Evaluation Loop
The self-evaluation loop is a powerful pattern that allows AI workflows to automatically assess and refine their outputs. This example demonstrates how to set up a flow that generates content, evaluates it, and iterates based on feedback until the desired quality is achieved.
#### Overview
The self-evaluation loop involves two main Crews:
1. **ShakespeareanXPostCrew**: Generates a Shakespearean-style post on a given topic.
2. **XPostReviewCrew**: Evaluates the generated post, providing feedback on its validity and quality.
The process iterates until the post meets the criteria or a maximum retry limit is reached. This approach ensures high-quality outputs through iterative refinement.
#### Importance
This pattern is essential for building robust AI systems that can adapt and improve over time. By automating the evaluation and feedback loop, developers can ensure that their AI workflows produce reliable and high-quality results.
#### Main Code Highlights
Below is the `main.py` file for the self-evaluation loop flow:
```python
from typing import Optional
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
from self_evaluation_loop_flow.crews.shakespeare_crew.shakespeare_crew import (
ShakespeareanXPostCrew,
)
from self_evaluation_loop_flow.crews.x_post_review_crew.x_post_review_crew import (
XPostReviewCrew,
)
class ShakespeareXPostFlowState(BaseModel):
x_post: str = ""
feedback: Optional[str] = None
valid: bool = False
retry_count: int = 0
class ShakespeareXPostFlow(Flow[ShakespeareXPostFlowState]):
@start("retry")
def generate_shakespeare_x_post(self):
print("Generating Shakespearean X post")
topic = "Flying cars"
result = (
ShakespeareanXPostCrew()
.crew()
.kickoff(inputs={"topic": topic, "feedback": self.state.feedback})
)
print("X post generated", result.raw)
self.state.x_post = result.raw
@router(generate_shakespeare_x_post)
def evaluate_x_post(self):
if self.state.retry_count > 3:
return "max_retry_exceeded"
result = XPostReviewCrew().crew().kickoff(inputs={"x_post": self.state.x_post})
self.state.valid = result["valid"]
self.state.feedback = result["feedback"]
print("valid", self.state.valid)
print("feedback", self.state.feedback)
self.state.retry_count += 1
if self.state.valid:
return "complete"
return "retry"
@listen("complete")
def save_result(self):
print("X post is valid")
print("X post:", self.state.x_post)
with open("x_post.txt", "w") as file:
file.write(self.state.x_post)
@listen("max_retry_exceeded")
def max_retry_exceeded_exit(self):
print("Max retry count exceeded")
print("X post:", self.state.x_post)
print("Feedback:", self.state.feedback)
def kickoff():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.kickoff()
def plot():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.plot()
if __name__ == "__main__":
kickoff()
```
#### Code Highlights
- **Retry Mechanism**: The flow uses a retry mechanism to regenerate the post if it doesn't meet the criteria, up to a maximum of three retries.
- **Feedback Loop**: Feedback from the `XPostReviewCrew` is used to refine the post iteratively.
- **State Management**: The flow maintains state using a Pydantic model, ensuring type safety and clarity.
For a complete example and further details, please refer to the [Self Evaluation Loop Flow repository](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow).
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
## Next Steps
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are five specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
@@ -747,8 +615,6 @@ If you're interested in exploring additional examples of flows, we have a variet
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
5. **Self Evaluation Loop Flow**: This flow demonstrates a self-evaluation loop where AI workflows automatically assess and refine their outputs through feedback. It involves generating content, evaluating it, and iterating until the desired quality is achieved. This pattern is crucial for developing robust AI systems that can adapt and improve over time. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow)
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
Also, check out our YouTube video on how to use flows in CrewAI below!
@@ -762,4 +628,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
></iframe>