Dropping User Memory (#3225)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled

* Dropping User Memory

* Dropping checks for user memory

* changed memory.mdx documentation removed user memory.

* Flaky Test Case Maybe

* Drop memory_config

* Fixed test cases

* Fixed some test cases

* Changed docs

* Changed BR docs

* Docs fixing

* Fix minor doc

* Fix minor doc

* Fix minor doc

* Added fallback mechanism in Mem0
This commit is contained in:
Vidit Ostwal
2025-08-06 22:38:10 +05:30
committed by GitHub
parent 1d9523c98f
commit 7ce20cfcc6
17 changed files with 224 additions and 541 deletions

View File

@@ -20,8 +20,7 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). | |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |

View File

@@ -9,8 +9,7 @@ icon: database
The CrewAI framework provides a sophisticated memory system designed to significantly enhance AI agent capabilities. CrewAI offers **three distinct memory approaches** that serve different use cases:
1. **Basic Memory System** - Built-in short-term, long-term, and entity memory
2. **User Memory** - User-specific memory with Mem0 integration (legacy approach)
3. **External Memory** - Standalone external memory providers (new approach)
2. **External Memory** - Standalone external memory providers
## Memory System Components
@@ -19,7 +18,7 @@ The CrewAI framework provides a sophisticated memory system designed to signific
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes using `RAG`, enabling agents to recall and utilize information relevant to their current context during the current executions.|
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, `ExternalMemory` and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
## 1. Basic Memory System (Recommended)
@@ -202,7 +201,7 @@ crew = Crew(
tasks=[task],
memory=True,
embedder={
"provider": "anthropic", # Match your LLM provider
"provider": "anthropic", # Match your LLM provider
"config": {
"api_key": "your-anthropic-key",
"model": "text-embedding-3-small"
@@ -684,81 +683,18 @@ print(f"OpenAI: {openai_time:.2f}s")
print(f"Ollama: {ollama_time:.2f}s")
```
## 2. User Memory with Mem0 (Legacy)
## 2. External Memory
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
<Warning>
**Legacy Approach**: While fully functional, this approach is considered legacy. For new projects requiring user-specific memory, consider using External Memory instead.
</Warning>
User Memory integrates with [Mem0](https://mem0.ai/) to provide user-specific memory that persists across sessions and integrates with the crew's contextual memory system.
### Prerequisites
```bash
pip install mem0ai
```
### Mem0 Cloud Configuration
### Basic External Memory with Mem0
```python
import os
from crewai import Crew, Process
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
# Set your Mem0 API key
os.environ["MEM0_API_KEY"] = "m0-your-api-key"
crew = Crew(
agents=[...],
tasks=[...],
memory=True, # Required for contextual memory integration
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory": {} # DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, use external_memory instead
},
process=Process.sequential,
verbose=True
)
```
### Advanced Mem0 Configuration
When using Mem0 Client, you can customize the memory configuration further, by using parameters like 'includes', 'excludes', 'custom_categories', 'infer' and 'run_id' (this is only for short-term memory).
You can find more details in the [Mem0 documentation](https://docs.mem0.ai/).
```python
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
]
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
"user_memory": {}
}
)
```
### Local Mem0 Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
# Create external memory instance with local Mem0 Configuration
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {
"user_id": "john",
@@ -776,37 +712,59 @@ crew = Crew(
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
}
},
"infer": True # Optional defaults to True
"infer": True # Optional defaults to True
},
"user_memory": {}
}
)
```
## 3. External Memory (New Approach)
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
### Basic External Memory with Mem0
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
os.environ["MEM0_API_KEY"] = "your-api-key"
# Create external memory instance
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {"user_id": "U-123"}
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
```
### Advanced External Memory with Mem0 Client
When using Mem0 Client, you can customize the memory configuration further, by using parameters like 'includes', 'excludes', 'custom_categories', 'infer' and 'run_id' (this is only for short-term memory).
You can find more details in the [Mem0 documentation](https://docs.mem0.ai/).
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
]
os.environ["MEM0_API_KEY"] = "your-api-key"
# Create external memory instance with Mem0 Client
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
@@ -845,17 +803,18 @@ crew = Crew(
)
```
## Memory System Comparison
## 🧠 Memory System Comparison
| **Category** | **Feature** | **Basic Memory** | **External Memory** |
|---------------------|------------------------|-----------------------------|------------------------------|
| **Ease of Use** | Setup Complexity | Simple | Moderate |
| | Integration | Built-in (contextual) | Standalone |
| **Persistence** | Storage | Local files | Custom / Mem0 |
| | Cross-session Support | ✅ | ✅ |
| **Personalization** | User-specific Memory | ❌ | ✅ |
| | Custom Providers | Limited | Any provider |
| **Use Case Fit** | Recommended For | Most general use cases | Specialized / custom needs |
| Feature | Basic Memory | User Memory (Legacy) | External Memory |
|---------|-------------|---------------------|----------------|
| **Setup Complexity** | Simple | Medium | Medium |
| **Integration** | Built-in contextual | Contextual + User-specific | Standalone |
| **Storage** | Local files | Mem0 Cloud/Local | Custom/Mem0 |
| **Cross-session** | ✅ | ✅ | ✅ |
| **User-specific** | ❌ | ✅ | ✅ |
| **Custom providers** | Limited | Mem0 only | Any provider |
| **Recommended for** | Most use cases | Legacy projects | Specialized needs |
## Supported Embedding Providers

View File

@@ -20,8 +20,7 @@ Uma crew no crewAI representa um grupo colaborativo de agentes trabalhando em co
| **Function Calling LLM** _(opcional)_ | `function_calling_llm` | Se definido, a crew utilizará este LLM para invocar funções das ferramentas para todos os agentes da crew. Cada agente pode ter seu próprio LLM, que substitui o LLM da crew para chamadas de função. |
| **Config** _(opcional)_ | `config` | Configurações opcionais para a crew, no formato `Json` ou `Dict[str, Any]`. |
| **Max RPM** _(opcional)_ | `max_rpm` | Número máximo de requisições por minuto que a crew respeita durante a execução. O padrão é `None`. |
| **Memory** _(opcional)_ | `memory` | Utilizada para armazenar memórias de execução (curto prazo, longo prazo, memória de entidade). |
| **Memory Config** _(opcional)_ | `memory_config` | Configuração para o provedor de memória a ser utilizada pela crew. |
| **Memory** _(opcional)_ | `memory` | Utilizada para armazenar memórias de execução (curto prazo, longo prazo, memória de entidade). | |
| **Cache** _(opcional)_ | `cache` | Especifica se deve usar cache para armazenar os resultados da execução de ferramentas. O padrão é `True`. |
| **Embedder** _(opcional)_ | `embedder` | Configuração do embedder a ser utilizado pela crew. Atualmente mais usado por memory. O padrão é `{"provider": "openai"}`. |
| **Step Callback** _(opcional)_ | `step_callback` | Uma função chamada após cada etapa de cada agente. Pode ser usada para registrar as ações do agente ou executar outras operações; não sobrescreve o `step_callback` específico do agente. |

View File

@@ -9,8 +9,7 @@ icon: database
O framework CrewAI oferece um sistema de memória sofisticado projetado para aprimorar significativamente as capacidades dos agentes de IA. O CrewAI disponibiliza **três abordagens distintas de memória** que atendem a diferentes casos de uso:
1. **Sistema Básico de Memória** - Memória de curto prazo, longo prazo e de entidades integradas
2. **Memória de Usuário** - Memória específica do usuário com integração ao Mem0 (abordagem legada)
3. **Memória Externa** - Provedores de memória externos autônomos (nova abordagem)
2. **Memória Externa** - Provedores de memória externos autônomos
## Componentes do Sistema de Memória
@@ -19,7 +18,7 @@ O framework CrewAI oferece um sistema de memória sofisticado projetado para apr
| **Memória de Curto Prazo** | Armazena temporariamente interações e resultados recentes usando `RAG`, permitindo que os agentes recordem e utilizem informações relevantes ao contexto atual durante as execuções. |
| **Memória de Longo Prazo** | Preserva informações valiosas e aprendizados de execuções passadas, permitindo que os agentes construam e refinem seu conhecimento ao longo do tempo. |
| **Memória de Entidades** | Captura e organiza informações sobre entidades (pessoas, lugares, conceitos) encontradas durante tarefas, facilitando um entendimento mais profundo e o mapeamento de relacionamentos. Utiliza `RAG` para armazenar informações de entidades. |
| **Memória Contextual** | Mantém o contexto das interações combinando `ShortTermMemory`, `LongTermMemory` e `EntityMemory`, auxiliando na coerência e relevância das respostas dos agentes ao longo de uma sequência de tarefas ou conversas. |
| **Memória Contextual** | Mantém o contexto das interações combinando `ShortTermMemory`, `LongTermMemory` , `ExternalMemory` e `EntityMemory`, auxiliando na coerência e relevância das respostas dos agentes ao longo de uma sequência de tarefas ou conversas. |
## 1. Sistema Básico de Memória (Recomendado)
@@ -684,67 +683,19 @@ print(f"OpenAI: {openai_time:.2f}s")
print(f"Ollama: {ollama_time:.2f}s")
```
## 2. Memória de Usuário com Mem0 (Legado)
## 2. Memória Externa
<Warning>
**Abordagem Legada**: Embora totalmente funcional, esta abordagem é considerada legada. Para novos projetos que exijam memória específica do usuário, considere usar Memória Externa.
</Warning>
A Memória Externa fornece um sistema de memória autônomo que opera independentemente da memória interna da crew. Isso é ideal para provedores de memória especializados ou compartilhamento de memória entre aplicações.
A Memória de Usuário se integra com o [Mem0](https://mem0.ai/) para fornecer memória específica do usuário que persiste entre sessões e se integra ao sistema de memória contextual da crew.
### Pré-requisitos
```bash
pip install mem0ai
```
### Configuração Mem0 na Nuvem
### Memória Externa Básica com Mem0
```python
import os
from crewai import Crew, Process
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
# Defina sua chave de API do Mem0
os.environ["MEM0_API_KEY"] = "m0-your-api-key"
crew = Crew(
agents=[...],
tasks=[...],
memory=True, # Necessário para integração com a memória contextual
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory": {} # Obrigatório - inicializa a memória de usuário
},
process=Process.sequential,
verbose=True
)
```
### Configuração Avançada Mem0
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Opcional
"project_id": "my_project_id", # Opcional
"api_key": "custom-api-key" # Opcional - sobrescreve variável de ambiente
},
"user_memory": {}
}
)
```
### Configuração Mem0 Local
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
# Create external memory instance with local Mem0 Configuration
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {
"user_id": "john",
@@ -761,37 +712,60 @@ crew = Crew(
"provider": "openai",
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
}
}
},
"infer": True # Optional defaults to True
},
"user_memory": {}
}
)
```
## 3. Memória Externa (Nova Abordagem)
A Memória Externa fornece um sistema de memória autônomo que opera independentemente da memória interna da crew. Isso é ideal para provedores de memória especializados ou compartilhamento de memória entre aplicações.
### Memória Externa Básica com Mem0
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
os.environ["MEM0_API_KEY"] = "your-api-key"
# Criar instância de memória externa
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {"user_id": "U-123"}
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Independente da memória básica
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
```
### Memória Externa Avançada com o Cliente Mem0
Ao usar o Cliente Mem0, você pode personalizar ainda mais a configuração de memória usando parâmetros como "includes", "excludes", "custom_categories", "infer" e "run_id" (apenas para memória de curto prazo).
Você pode encontrar mais detalhes na [documentação do Mem0](https://docs.mem0.ai/).
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
]
os.environ["MEM0_API_KEY"] = "your-api-key"
# Create external memory instance with Mem0 Client
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
@@ -830,17 +804,18 @@ crew = Crew(
)
```
## Comparação dos Sistemas de Memória
## 🧠 Comparação dos Sistemas de Memória
| **Categoria** | **Recurso** | **Memória Básica** | **Memória Externa** |
|------------------------|-------------------------------|-------------------------------|----------------------------------|
| **Facilidade de Uso** | Complexidade de Setup | Simples | Média |
| | Integração | Contextual integrada | Autônoma |
| **Persistência** | Armazenamento | Arquivos locais | Customizada / Mem0 |
| | Multi-sessão | ✅ | ✅ |
| **Personalização** | Especificidade do Usuário | ❌ | ✅ |
| | Provedores Customizados | Limitado | Qualquer provedor |
| **Aplicação Recomendada** | Recomendado para | Maioria dos casos | Necessidades especializadas |
| Recurso | Memória Básica | Memória de Usuário (Legado) | Memória Externa |
|---------|---------------|-----------------------------|----------------|
| **Complexidade de Setup** | Simples | Média | Média |
| **Integração** | Contextual integrada | Contextual + específica do usuário | Autônoma |
| **Armazenamento** | Arquivos locais | Mem0 Cloud/Local | Customizada/Mem0 |
| **Multi-sessão** | ✅ | ✅ | ✅ |
| **Especificidade do Usuário** | ❌ | ✅ | ✅ |
| **Provedores Customizados** | Limitado | Apenas Mem0 | Qualquer provedor |
| **Recomendado para** | Maioria dos casos | Projetos legados | Necessidades especializadas |
## Provedores de Embedding Suportados
@@ -989,4 +964,4 @@ crew = Crew(
## Conclusão
Integrar o sistema de memória do CrewAI em seus projetos é simples. Ao aproveitar os componentes e configurações oferecidos,
você rapidamente capacita seus agentes a lembrar, raciocinar e aprender com suas interações, desbloqueando novos níveis de inteligência e capacidade.
você rapidamente capacita seus agentes a lembrar, raciocinar e aprender com suas interações, desbloqueando novos níveis de inteligência e capacidade.