Merge branch 'main' into lorenze/improve-docs-flows

This commit is contained in:
Lorenze Jay
2025-12-31 08:32:50 -08:00
committed by GitHub
411 changed files with 17592 additions and 36636 deletions

View File

@@ -16,16 +16,17 @@ Welcome to the CrewAI AOP API reference. This API allows you to programmatically
Navigate to your crew's detail page in the CrewAI AOP dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive
a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
Use `GET /{kickoff_id}/status` to check execution status and retrieve results.
</Step>
</Steps>
@@ -40,13 +41,14 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
### Token Types
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
| Token Type | Scope | Use Case |
| :-------------------- | :------------------------ | :----------------------------------------------------------- |
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI AOP dashboard.
You can find both token types in the Status tab of your crew's detail page in
the CrewAI AOP dashboard.
</Tip>
## Base URL
@@ -63,29 +65,33 @@ Replace `your-crew-name` with your actual crew's URL from the dashboard.
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
3. **Monitoring**: Poll `GET /{kickoff_id}/status` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| Code | Meaning |
| ----- | :----------------------------------------- |
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew
URL, we use **reference mode** instead of an interactive playground to avoid
confusion. This shows you exactly what the requests should look like without
non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
@@ -103,6 +109,7 @@ Each endpoint page shows you:
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
@@ -111,10 +118,18 @@ Each endpoint page shows you:
## Need Help?
<CardGroup cols={2}>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
<Card
title="Enterprise Support"
icon="headset"
href="mailto:support@crewai.com"
>
Get help with API integration and troubleshooting
</Card>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
<Card
title="Enterprise Dashboard"
icon="chart-line"
href="https://app.crewai.com"
>
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -1,8 +1,6 @@
---
title: "GET /status/{kickoff_id}"
title: "GET /{kickoff_id}/status"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
openapi: "/enterprise-api.en.yaml GET /{kickoff_id}/status"
mode: "wide"
---

View File

@@ -572,6 +572,55 @@ The `third_method` and `fourth_method` listen to the output of the `second_metho
When you run this Flow, the output will change based on the random boolean value generated by the `start_method`.
### Human in the Loop (human feedback)
The `@human_feedback` decorator enables human-in-the-loop workflows by pausing flow execution to collect feedback from a human. This is useful for approval gates, quality review, and decision points that require human judgment.
```python Code
from crewai.flow.flow import Flow, start, listen
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
class ReviewFlow(Flow):
@start()
@human_feedback(
message="Do you approve this content?",
emit=["approved", "rejected", "needs_revision"],
llm="gpt-4o-mini",
default_outcome="needs_revision",
)
def generate_content(self):
return "Content to be reviewed..."
@listen("approved")
def on_approval(self, result: HumanFeedbackResult):
print(f"Approved! Feedback: {result.feedback}")
@listen("rejected")
def on_rejection(self, result: HumanFeedbackResult):
print(f"Rejected. Reason: {result.feedback}")
```
When `emit` is specified, the human's free-form feedback is interpreted by an LLM and collapsed into one of the specified outcomes, which then triggers the corresponding `@listen` decorator.
You can also use `@human_feedback` without routing to simply collect feedback:
```python Code
@start()
@human_feedback(message="Any comments on this output?")
def my_method(self):
return "Output for review"
@listen(my_method)
def next_step(self, result: HumanFeedbackResult):
# Access feedback via result.feedback
# Access original output via result.output
pass
```
Access all feedback collected during a flow via `self.last_human_feedback` (most recent) or `self.human_feedback_history` (all feedback as a list).
For a complete guide on human feedback in flows, including **async/non-blocking feedback** with custom providers (Slack, webhooks, etc.), see [Human Feedback in Flows](/en/learn/human-feedback-in-flows).
## Adding Agents to Flows
Agents can be seamlessly integrated into your flows, providing a lightweight alternative to full Crews when you need simpler, focused task execution. Here's an example of how to use an Agent within a flow to perform market research:

View File

@@ -187,6 +187,97 @@ You can also deploy your crews directly through the CrewAI AOP web interface by
</Steps>
## Option 3: Redeploy Using API (CI/CD Integration)
For automated deployments in CI/CD pipelines, you can use the CrewAI API to trigger redeployments of existing crews. This is particularly useful for GitHub Actions, Jenkins, or other automation workflows.
<Steps>
<Step title="Get Your Personal Access Token">
Navigate to your CrewAI AOP account settings to generate an API token:
1. Go to [app.crewai.com](https://app.crewai.com)
2. Click on **Settings** → **Account** → **Personal Access Token**
3. Generate a new token and copy it securely
4. Store this token as a secret in your CI/CD system
</Step>
<Step title="Find Your Automation UUID">
Locate the unique identifier for your deployed crew:
1. Go to **Automations** in your CrewAI AOP dashboard
2. Select your existing automation/crew
3. Click on **Additional Details**
4. Copy the **UUID** - this identifies your specific crew deployment
</Step>
<Step title="Trigger Redeployment via API">
Use the Deploy API endpoint to trigger a redeployment:
```bash
curl -i -X POST \
-H "Authorization: Bearer YOUR_PERSONAL_ACCESS_TOKEN" \
https://app.crewai.com/crewai_plus/api/v1/crews/YOUR-AUTOMATION-UUID/deploy
# HTTP/2 200
# content-type: application/json
#
# {
# "uuid": "your-automation-uuid",
# "status": "Deploy Enqueued",
# "public_url": "https://your-crew-deployment.crewai.com",
# "token": "your-bearer-token"
# }
```
<Info>
If your automation was first created connected to Git, the API will automatically pull the latest changes from your repository before redeploying.
</Info>
</Step>
<Step title="GitHub Actions Integration Example">
Here's a GitHub Actions workflow with more complex deployment triggers:
```yaml
name: Deploy CrewAI Automation
on:
push:
branches: [ main ]
pull_request:
types: [ labeled ]
release:
types: [ published ]
jobs:
deploy:
runs-on: ubuntu-latest
if: |
(github.event_name == 'push' && github.ref == 'refs/heads/main') ||
(github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'deploy')) ||
(github.event_name == 'release')
steps:
- name: Trigger CrewAI Redeployment
run: |
curl -X POST \
-H "Authorization: Bearer ${{ secrets.CREWAI_PAT }}" \
https://app.crewai.com/crewai_plus/api/v1/crews/${{ secrets.CREWAI_AUTOMATION_UUID }}/deploy
```
<Tip>
Add `CREWAI_PAT` and `CREWAI_AUTOMATION_UUID` as repository secrets. For PR deployments, add a "deploy" label to trigger the workflow.
</Tip>
</Step>
</Steps>
## ⚠️ Environment Variable Security Requirements
<Warning>

View File

@@ -62,13 +62,13 @@ Test your Gmail trigger integration locally using the CrewAI CLI:
crewai triggers list
# Simulate a Gmail trigger with realistic payload
crewai triggers run gmail/new_email
crewai triggers run gmail/new_email_received
```
The `crewai triggers run` command will execute your crew with a complete Gmail payload, allowing you to test your parsing logic before deployment.
<Warning>
Use `crewai triggers run gmail/new_email` (not `crewai run`) to simulate trigger execution during development. After deployment, your crew will automatically receive the trigger payload.
Use `crewai triggers run gmail/new_email_received` (not `crewai run`) to simulate trigger execution during development. After deployment, your crew will automatically receive the trigger payload.
</Warning>
## Monitoring Executions
@@ -83,6 +83,6 @@ Track history and performance of triggered runs:
- Ensure Gmail is connected in Tools & Integrations
- Verify the Gmail Trigger is enabled on the Triggers tab
- Test locally with `crewai triggers run gmail/new_email` to see the exact payload structure
- Test locally with `crewai triggers run gmail/new_email_received` to see the exact payload structure
- Check the execution logs and confirm the payload is passed as `crewai_trigger_payload`
- Remember: use `crewai triggers run` (not `crewai run`) to simulate trigger execution

View File

@@ -0,0 +1,581 @@
---
title: Human Feedback in Flows
description: Learn how to integrate human feedback directly into your CrewAI Flows using the @human_feedback decorator
icon: user-check
mode: "wide"
---
## Overview
The `@human_feedback` decorator enables human-in-the-loop (HITL) workflows directly within CrewAI Flows. It allows you to pause flow execution, present output to a human for review, collect their feedback, and optionally route to different listeners based on the feedback outcome.
This is particularly valuable for:
- **Quality assurance**: Review AI-generated content before it's used downstream
- **Decision gates**: Let humans make critical decisions in automated workflows
- **Approval workflows**: Implement approve/reject/revise patterns
- **Interactive refinement**: Collect feedback to improve outputs iteratively
```mermaid
flowchart LR
A[Flow Method] --> B[Output Generated]
B --> C[Human Reviews]
C --> D{Feedback}
D -->|emit specified| E[LLM Collapses to Outcome]
D -->|no emit| F[HumanFeedbackResult]
E --> G["@listen('approved')"]
E --> H["@listen('rejected')"]
F --> I[Next Listener]
```
## Quick Start
Here's the simplest way to add human feedback to a flow:
```python Code
from crewai.flow.flow import Flow, start, listen
from crewai.flow.human_feedback import human_feedback
class SimpleReviewFlow(Flow):
@start()
@human_feedback(message="Please review this content:")
def generate_content(self):
return "This is AI-generated content that needs review."
@listen(generate_content)
def process_feedback(self, result):
print(f"Content: {result.output}")
print(f"Human said: {result.feedback}")
flow = SimpleReviewFlow()
flow.kickoff()
```
When this flow runs, it will:
1. Execute `generate_content` and return the string
2. Display the output to the user with the request message
3. Wait for the user to type feedback (or press Enter to skip)
4. Pass a `HumanFeedbackResult` object to `process_feedback`
## The @human_feedback Decorator
### Parameters
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| `message` | `str` | Yes | The message shown to the human alongside the method output |
| `emit` | `Sequence[str]` | No | List of possible outcomes. Feedback is collapsed to one of these, which triggers `@listen` decorators |
| `llm` | `str \| BaseLLM` | When `emit` specified | LLM used to interpret feedback and map to an outcome |
| `default_outcome` | `str` | No | Outcome to use if no feedback provided. Must be in `emit` |
| `metadata` | `dict` | No | Additional data for enterprise integrations |
| `provider` | `HumanFeedbackProvider` | No | Custom provider for async/non-blocking feedback. See [Async Human Feedback](#async-human-feedback-non-blocking) |
### Basic Usage (No Routing)
When you don't specify `emit`, the decorator simply collects feedback and passes a `HumanFeedbackResult` to the next listener:
```python Code
@start()
@human_feedback(message="What do you think of this analysis?")
def analyze_data(self):
return "Analysis results: Revenue up 15%, costs down 8%"
@listen(analyze_data)
def handle_feedback(self, result):
# result is a HumanFeedbackResult
print(f"Analysis: {result.output}")
print(f"Feedback: {result.feedback}")
```
### Routing with emit
When you specify `emit`, the decorator becomes a router. The human's free-form feedback is interpreted by an LLM and collapsed into one of the specified outcomes:
```python Code
@start()
@human_feedback(
message="Do you approve this content for publication?",
emit=["approved", "rejected", "needs_revision"],
llm="gpt-4o-mini",
default_outcome="needs_revision",
)
def review_content(self):
return "Draft blog post content here..."
@listen("approved")
def publish(self, result):
print(f"Publishing! User said: {result.feedback}")
@listen("rejected")
def discard(self, result):
print(f"Discarding. Reason: {result.feedback}")
@listen("needs_revision")
def revise(self, result):
print(f"Revising based on: {result.feedback}")
```
<Tip>
The LLM uses structured outputs (function calling) when available to guarantee the response is one of your specified outcomes. This makes routing reliable and predictable.
</Tip>
## HumanFeedbackResult
The `HumanFeedbackResult` dataclass contains all information about a human feedback interaction:
```python Code
from crewai.flow.human_feedback import HumanFeedbackResult
@dataclass
class HumanFeedbackResult:
output: Any # The original method output shown to the human
feedback: str # The raw feedback text from the human
outcome: str | None # The collapsed outcome (if emit was specified)
timestamp: datetime # When the feedback was received
method_name: str # Name of the decorated method
metadata: dict # Any metadata passed to the decorator
```
### Accessing in Listeners
When a listener is triggered by a `@human_feedback` method with `emit`, it receives the `HumanFeedbackResult`:
```python Code
@listen("approved")
def on_approval(self, result: HumanFeedbackResult):
print(f"Original output: {result.output}")
print(f"User feedback: {result.feedback}")
print(f"Outcome: {result.outcome}") # "approved"
print(f"Received at: {result.timestamp}")
```
## Accessing Feedback History
The `Flow` class provides two attributes for accessing human feedback:
### last_human_feedback
Returns the most recent `HumanFeedbackResult`:
```python Code
@listen(some_method)
def check_feedback(self):
if self.last_human_feedback:
print(f"Last feedback: {self.last_human_feedback.feedback}")
```
### human_feedback_history
A list of all `HumanFeedbackResult` objects collected during the flow:
```python Code
@listen(final_step)
def summarize(self):
print(f"Total feedback collected: {len(self.human_feedback_history)}")
for i, fb in enumerate(self.human_feedback_history):
print(f"{i+1}. {fb.method_name}: {fb.outcome or 'no routing'}")
```
<Warning>
Each `HumanFeedbackResult` is appended to `human_feedback_history`, so multiple feedback steps won't overwrite each other. Use this list to access all feedback collected during the flow.
</Warning>
## Complete Example: Content Approval Workflow
Here's a full example implementing a content review and approval workflow:
<CodeGroup>
```python Code
from crewai.flow.flow import Flow, start, listen
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
from pydantic import BaseModel
class ContentState(BaseModel):
topic: str = ""
draft: str = ""
final_content: str = ""
revision_count: int = 0
class ContentApprovalFlow(Flow[ContentState]):
"""A flow that generates content and gets human approval."""
@start()
def get_topic(self):
self.state.topic = input("What topic should I write about? ")
return self.state.topic
@listen(get_topic)
def generate_draft(self, topic):
# In real use, this would call an LLM
self.state.draft = f"# {topic}\n\nThis is a draft about {topic}..."
return self.state.draft
@listen(generate_draft)
@human_feedback(
message="Please review this draft. Reply 'approved', 'rejected', or provide revision feedback:",
emit=["approved", "rejected", "needs_revision"],
llm="gpt-4o-mini",
default_outcome="needs_revision",
)
def review_draft(self, draft):
return draft
@listen("approved")
def publish_content(self, result: HumanFeedbackResult):
self.state.final_content = result.output
print("\n✅ Content approved and published!")
print(f"Reviewer comment: {result.feedback}")
return "published"
@listen("rejected")
def handle_rejection(self, result: HumanFeedbackResult):
print("\n❌ Content rejected")
print(f"Reason: {result.feedback}")
return "rejected"
@listen("needs_revision")
def revise_content(self, result: HumanFeedbackResult):
self.state.revision_count += 1
print(f"\n📝 Revision #{self.state.revision_count} requested")
print(f"Feedback: {result.feedback}")
# In a real flow, you might loop back to generate_draft
# For this example, we just acknowledge
return "revision_requested"
# Run the flow
flow = ContentApprovalFlow()
result = flow.kickoff()
print(f"\nFlow completed. Revisions requested: {flow.state.revision_count}")
```
```text Output
What topic should I write about? AI Safety
==================================================
OUTPUT FOR REVIEW:
==================================================
# AI Safety
This is a draft about AI Safety...
==================================================
Please review this draft. Reply 'approved', 'rejected', or provide revision feedback:
(Press Enter to skip, or type your feedback)
Your feedback: Looks good, approved!
✅ Content approved and published!
Reviewer comment: Looks good, approved!
Flow completed. Revisions requested: 0
```
</CodeGroup>
## Combining with Other Decorators
The `@human_feedback` decorator works with other flow decorators. Place it as the innermost decorator (closest to the function):
```python Code
# Correct: @human_feedback is innermost (closest to the function)
@start()
@human_feedback(message="Review this:")
def my_start_method(self):
return "content"
@listen(other_method)
@human_feedback(message="Review this too:")
def my_listener(self, data):
return f"processed: {data}"
```
<Tip>
Place `@human_feedback` as the innermost decorator (last/closest to the function) so it wraps the method directly and can capture the return value before passing to the flow system.
</Tip>
## Best Practices
### 1. Write Clear Request Messages
The `request` parameter is what the human sees. Make it actionable:
```python Code
# ✅ Good - clear and actionable
@human_feedback(message="Does this summary accurately capture the key points? Reply 'yes' or explain what's missing:")
# ❌ Bad - vague
@human_feedback(message="Review this:")
```
### 2. Choose Meaningful Outcomes
When using `emit`, pick outcomes that map naturally to human responses:
```python Code
# ✅ Good - natural language outcomes
emit=["approved", "rejected", "needs_more_detail"]
# ❌ Bad - technical or unclear
emit=["state_1", "state_2", "state_3"]
```
### 3. Always Provide a Default Outcome
Use `default_outcome` to handle cases where users press Enter without typing:
```python Code
@human_feedback(
message="Approve? (press Enter to request revision)",
emit=["approved", "needs_revision"],
llm="gpt-4o-mini",
default_outcome="needs_revision", # Safe default
)
```
### 4. Use Feedback History for Audit Trails
Access `human_feedback_history` to create audit logs:
```python Code
@listen(final_step)
def create_audit_log(self):
log = []
for fb in self.human_feedback_history:
log.append({
"step": fb.method_name,
"outcome": fb.outcome,
"feedback": fb.feedback,
"timestamp": fb.timestamp.isoformat(),
})
return log
```
### 5. Handle Both Routed and Non-Routed Feedback
When designing flows, consider whether you need routing:
| Scenario | Use |
|----------|-----|
| Simple review, just need the feedback text | No `emit` |
| Need to branch to different paths based on response | Use `emit` |
| Approval gates with approve/reject/revise | Use `emit` |
| Collecting comments for logging only | No `emit` |
## Async Human Feedback (Non-Blocking)
By default, `@human_feedback` blocks execution waiting for console input. For production applications, you may need **async/non-blocking** feedback that integrates with external systems like Slack, email, webhooks, or APIs.
### The Provider Abstraction
Use the `provider` parameter to specify a custom feedback collection strategy:
```python Code
from crewai.flow import Flow, start, human_feedback, HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
class WebhookProvider(HumanFeedbackProvider):
"""Provider that pauses flow and waits for webhook callback."""
def __init__(self, webhook_url: str):
self.webhook_url = webhook_url
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
# Notify external system (e.g., send Slack message, create ticket)
self.send_notification(context)
# Pause execution - framework handles persistence automatically
raise HumanFeedbackPending(
context=context,
callback_info={"webhook_url": f"{self.webhook_url}/{context.flow_id}"}
)
class ReviewFlow(Flow):
@start()
@human_feedback(
message="Review this content:",
emit=["approved", "rejected"],
llm="gpt-4o-mini",
provider=WebhookProvider("https://myapp.com/api"),
)
def generate_content(self):
return "AI-generated content..."
@listen("approved")
def publish(self, result):
return "Published!"
```
<Tip>
The flow framework **automatically persists state** when `HumanFeedbackPending` is raised. Your provider only needs to notify the external system and raise the exception—no manual persistence calls required.
</Tip>
### Handling Paused Flows
When using an async provider, `kickoff()` returns a `HumanFeedbackPending` object instead of raising an exception:
```python Code
flow = ReviewFlow()
result = flow.kickoff()
if isinstance(result, HumanFeedbackPending):
# Flow is paused, state is automatically persisted
print(f"Waiting for feedback at: {result.callback_info['webhook_url']}")
print(f"Flow ID: {result.context.flow_id}")
else:
# Normal completion
print(f"Flow completed: {result}")
```
### Resuming a Paused Flow
When feedback arrives (e.g., via webhook), resume the flow:
```python Code
# Sync handler:
def handle_feedback_webhook(flow_id: str, feedback: str):
flow = ReviewFlow.from_pending(flow_id)
result = flow.resume(feedback)
return result
# Async handler (FastAPI, aiohttp, etc.):
async def handle_feedback_webhook(flow_id: str, feedback: str):
flow = ReviewFlow.from_pending(flow_id)
result = await flow.resume_async(feedback)
return result
```
### Key Types
| Type | Description |
|------|-------------|
| `HumanFeedbackProvider` | Protocol for custom feedback providers |
| `PendingFeedbackContext` | Contains all info needed to resume a paused flow |
| `HumanFeedbackPending` | Returned by `kickoff()` when flow is paused for feedback |
| `ConsoleProvider` | Default blocking console input provider |
### PendingFeedbackContext
The context contains everything needed to resume:
```python Code
@dataclass
class PendingFeedbackContext:
flow_id: str # Unique identifier for this flow execution
flow_class: str # Fully qualified class name
method_name: str # Method that triggered feedback
method_output: Any # Output shown to the human
message: str # The request message
emit: list[str] | None # Possible outcomes for routing
default_outcome: str | None
metadata: dict # Custom metadata
llm: str | None # LLM for outcome collapsing
requested_at: datetime
```
### Complete Async Flow Example
```python Code
from crewai.flow import (
Flow, start, listen, human_feedback,
HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
)
class SlackNotificationProvider(HumanFeedbackProvider):
"""Provider that sends Slack notifications and pauses for async feedback."""
def __init__(self, channel: str):
self.channel = channel
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
# Send Slack notification (implement your own)
slack_thread_id = self.post_to_slack(
channel=self.channel,
message=f"Review needed:\n\n{context.method_output}\n\n{context.message}",
)
# Pause execution - framework handles persistence automatically
raise HumanFeedbackPending(
context=context,
callback_info={
"slack_channel": self.channel,
"thread_id": slack_thread_id,
}
)
class ContentPipeline(Flow):
@start()
@human_feedback(
message="Approve this content for publication?",
emit=["approved", "rejected", "needs_revision"],
llm="gpt-4o-mini",
default_outcome="needs_revision",
provider=SlackNotificationProvider("#content-reviews"),
)
def generate_content(self):
return "AI-generated blog post content..."
@listen("approved")
def publish(self, result):
print(f"Publishing! Reviewer said: {result.feedback}")
return {"status": "published"}
@listen("rejected")
def archive(self, result):
print(f"Archived. Reason: {result.feedback}")
return {"status": "archived"}
@listen("needs_revision")
def queue_revision(self, result):
print(f"Queued for revision: {result.feedback}")
return {"status": "revision_needed"}
# Starting the flow (will pause and wait for Slack response)
def start_content_pipeline():
flow = ContentPipeline()
result = flow.kickoff()
if isinstance(result, HumanFeedbackPending):
return {"status": "pending", "flow_id": result.context.flow_id}
return result
# Resuming when Slack webhook fires (sync handler)
def on_slack_feedback(flow_id: str, slack_message: str):
flow = ContentPipeline.from_pending(flow_id)
result = flow.resume(slack_message)
return result
# If your handler is async (FastAPI, aiohttp, Slack Bolt async, etc.)
async def on_slack_feedback_async(flow_id: str, slack_message: str):
flow = ContentPipeline.from_pending(flow_id)
result = await flow.resume_async(slack_message)
return result
```
<Warning>
If you're using an async web framework (FastAPI, aiohttp, Slack Bolt async mode), use `await flow.resume_async()` instead of `flow.resume()`. Calling `resume()` from within a running event loop will raise a `RuntimeError`.
</Warning>
### Best Practices for Async Feedback
1. **Check the return type**: `kickoff()` returns `HumanFeedbackPending` when paused—no try/except needed
2. **Use the right resume method**: Use `resume()` in sync code, `await resume_async()` in async code
3. **Store callback info**: Use `callback_info` to store webhook URLs, ticket IDs, etc.
4. **Implement idempotency**: Your resume handler should be idempotent for safety
5. **Automatic persistence**: State is automatically saved when `HumanFeedbackPending` is raised and uses `SQLiteFlowPersistence` by default
6. **Custom persistence**: Pass a custom persistence instance to `from_pending()` if needed
## Related Documentation
- [Flows Overview](/en/concepts/flows) - Learn about CrewAI Flows
- [Flow State Management](/en/guides/flows/mastering-flow-state) - Managing state in flows
- [Flow Persistence](/en/concepts/flows#persistence) - Persisting flow state
- [Routing with @router](/en/concepts/flows#router) - More about conditional routing
- [Human Input on Execution](/en/learn/human-input-on-execution) - Task-level human input

View File

@@ -5,9 +5,22 @@ icon: "user-check"
mode: "wide"
---
Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI.
Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. CrewAI provides multiple ways to implement HITL depending on your needs.
## Setting Up HITL Workflows
## Choosing Your HITL Approach
CrewAI offers two main approaches for implementing human-in-the-loop workflows:
| Approach | Best For | Integration |
|----------|----------|-------------|
| **Flow-based** (`@human_feedback` decorator) | Local development, console-based review, synchronous workflows | [Human Feedback in Flows](/en/learn/human-feedback-in-flows) |
| **Webhook-based** (Enterprise) | Production deployments, async workflows, external integrations (Slack, Teams, etc.) | This guide |
<Tip>
If you're building flows and want to add human review steps with routing based on feedback, check out the [Human Feedback in Flows](/en/learn/human-feedback-in-flows) guide for the `@human_feedback` decorator.
</Tip>
## Setting Up Webhook-Based HITL Workflows
<Steps>
<Step title="Configure Your Task">