mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-22 14:48:13 +00:00
Merge branch 'main' into lorenze/improve-docs-flows
This commit is contained in:
@@ -309,6 +309,7 @@
|
||||
"en/learn/hierarchical-process",
|
||||
"en/learn/human-input-on-execution",
|
||||
"en/learn/human-in-the-loop",
|
||||
"en/learn/human-feedback-in-flows",
|
||||
"en/learn/kickoff-async",
|
||||
"en/learn/kickoff-for-each",
|
||||
"en/learn/llm-connections",
|
||||
@@ -738,6 +739,7 @@
|
||||
"pt-BR/learn/hierarchical-process",
|
||||
"pt-BR/learn/human-input-on-execution",
|
||||
"pt-BR/learn/human-in-the-loop",
|
||||
"pt-BR/learn/human-feedback-in-flows",
|
||||
"pt-BR/learn/kickoff-async",
|
||||
"pt-BR/learn/kickoff-for-each",
|
||||
"pt-BR/learn/llm-connections",
|
||||
@@ -1176,6 +1178,7 @@
|
||||
"ko/learn/hierarchical-process",
|
||||
"ko/learn/human-input-on-execution",
|
||||
"ko/learn/human-in-the-loop",
|
||||
"ko/learn/human-feedback-in-flows",
|
||||
"ko/learn/kickoff-async",
|
||||
"ko/learn/kickoff-for-each",
|
||||
"ko/learn/llm-connections",
|
||||
|
||||
@@ -16,16 +16,17 @@ Welcome to the CrewAI AOP API reference. This API allows you to programmatically
|
||||
Navigate to your crew's detail page in the CrewAI AOP dashboard and copy your Bearer Token from the Status tab.
|
||||
</Step>
|
||||
|
||||
<Step title="Discover Required Inputs">
|
||||
Use the `GET /inputs` endpoint to see what parameters your crew expects.
|
||||
</Step>
|
||||
<Step title="Discover Required Inputs">
|
||||
Use the `GET /inputs` endpoint to see what parameters your crew expects.
|
||||
</Step>
|
||||
|
||||
<Step title="Start a Crew Execution">
|
||||
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
|
||||
</Step>
|
||||
<Step title="Start a Crew Execution">
|
||||
Call `POST /kickoff` with your inputs to start the crew execution and receive
|
||||
a `kickoff_id`.
|
||||
</Step>
|
||||
|
||||
<Step title="Monitor Progress">
|
||||
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
|
||||
Use `GET /{kickoff_id}/status` to check execution status and retrieve results.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
@@ -40,13 +41,14 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
|
||||
|
||||
### Token Types
|
||||
|
||||
| Token Type | Scope | Use Case |
|
||||
|:-----------|:--------|:----------|
|
||||
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
|
||||
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
|
||||
| Token Type | Scope | Use Case |
|
||||
| :-------------------- | :------------------------ | :----------------------------------------------------------- |
|
||||
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
|
||||
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
|
||||
|
||||
<Tip>
|
||||
You can find both token types in the Status tab of your crew's detail page in the CrewAI AOP dashboard.
|
||||
You can find both token types in the Status tab of your crew's detail page in
|
||||
the CrewAI AOP dashboard.
|
||||
</Tip>
|
||||
|
||||
## Base URL
|
||||
@@ -63,29 +65,33 @@ Replace `your-crew-name` with your actual crew's URL from the dashboard.
|
||||
|
||||
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
|
||||
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
|
||||
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
|
||||
3. **Monitoring**: Poll `GET /{kickoff_id}/status` until completion
|
||||
4. **Results**: Extract the final output from the completed response
|
||||
|
||||
## Error Handling
|
||||
|
||||
The API uses standard HTTP status codes:
|
||||
|
||||
| Code | Meaning |
|
||||
|------|:--------|
|
||||
| `200` | Success |
|
||||
| `400` | Bad Request - Invalid input format |
|
||||
| `401` | Unauthorized - Invalid bearer token |
|
||||
| `404` | Not Found - Resource doesn't exist |
|
||||
| Code | Meaning |
|
||||
| ----- | :----------------------------------------- |
|
||||
| `200` | Success |
|
||||
| `400` | Bad Request - Invalid input format |
|
||||
| `401` | Unauthorized - Invalid bearer token |
|
||||
| `404` | Not Found - Resource doesn't exist |
|
||||
| `422` | Validation Error - Missing required inputs |
|
||||
| `500` | Server Error - Contact support |
|
||||
| `500` | Server Error - Contact support |
|
||||
|
||||
## Interactive Testing
|
||||
|
||||
<Info>
|
||||
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
|
||||
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew
|
||||
URL, we use **reference mode** instead of an interactive playground to avoid
|
||||
confusion. This shows you exactly what the requests should look like without
|
||||
non-functional send buttons.
|
||||
</Info>
|
||||
|
||||
Each endpoint page shows you:
|
||||
|
||||
- ✅ **Exact request format** with all parameters
|
||||
- ✅ **Response examples** for success and error cases
|
||||
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
|
||||
@@ -103,6 +109,7 @@ Each endpoint page shows you:
|
||||
</CardGroup>
|
||||
|
||||
**Example workflow:**
|
||||
|
||||
1. **Copy this cURL example** from any endpoint page
|
||||
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
|
||||
3. **Replace the Bearer token** with your real token from the dashboard
|
||||
@@ -111,10 +118,18 @@ Each endpoint page shows you:
|
||||
## Need Help?
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
|
||||
<Card
|
||||
title="Enterprise Support"
|
||||
icon="headset"
|
||||
href="mailto:support@crewai.com"
|
||||
>
|
||||
Get help with API integration and troubleshooting
|
||||
</Card>
|
||||
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
|
||||
<Card
|
||||
title="Enterprise Dashboard"
|
||||
icon="chart-line"
|
||||
href="https://app.crewai.com"
|
||||
>
|
||||
Manage your crews and view execution logs
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
---
|
||||
title: "GET /status/{kickoff_id}"
|
||||
title: "GET /{kickoff_id}/status"
|
||||
description: "Get execution status"
|
||||
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
|
||||
openapi: "/enterprise-api.en.yaml GET /{kickoff_id}/status"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
|
||||
|
||||
@@ -572,6 +572,55 @@ The `third_method` and `fourth_method` listen to the output of the `second_metho
|
||||
|
||||
When you run this Flow, the output will change based on the random boolean value generated by the `start_method`.
|
||||
|
||||
### Human in the Loop (human feedback)
|
||||
|
||||
The `@human_feedback` decorator enables human-in-the-loop workflows by pausing flow execution to collect feedback from a human. This is useful for approval gates, quality review, and decision points that require human judgment.
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Do you approve this content?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def generate_content(self):
|
||||
return "Content to be reviewed..."
|
||||
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"Approved! Feedback: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def on_rejection(self, result: HumanFeedbackResult):
|
||||
print(f"Rejected. Reason: {result.feedback}")
|
||||
```
|
||||
|
||||
When `emit` is specified, the human's free-form feedback is interpreted by an LLM and collapsed into one of the specified outcomes, which then triggers the corresponding `@listen` decorator.
|
||||
|
||||
You can also use `@human_feedback` without routing to simply collect feedback:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="Any comments on this output?")
|
||||
def my_method(self):
|
||||
return "Output for review"
|
||||
|
||||
@listen(my_method)
|
||||
def next_step(self, result: HumanFeedbackResult):
|
||||
# Access feedback via result.feedback
|
||||
# Access original output via result.output
|
||||
pass
|
||||
```
|
||||
|
||||
Access all feedback collected during a flow via `self.last_human_feedback` (most recent) or `self.human_feedback_history` (all feedback as a list).
|
||||
|
||||
For a complete guide on human feedback in flows, including **async/non-blocking feedback** with custom providers (Slack, webhooks, etc.), see [Human Feedback in Flows](/en/learn/human-feedback-in-flows).
|
||||
|
||||
## Adding Agents to Flows
|
||||
|
||||
Agents can be seamlessly integrated into your flows, providing a lightweight alternative to full Crews when you need simpler, focused task execution. Here's an example of how to use an Agent within a flow to perform market research:
|
||||
|
||||
@@ -187,6 +187,97 @@ You can also deploy your crews directly through the CrewAI AOP web interface by
|
||||
|
||||
</Steps>
|
||||
|
||||
## Option 3: Redeploy Using API (CI/CD Integration)
|
||||
|
||||
For automated deployments in CI/CD pipelines, you can use the CrewAI API to trigger redeployments of existing crews. This is particularly useful for GitHub Actions, Jenkins, or other automation workflows.
|
||||
|
||||
<Steps>
|
||||
<Step title="Get Your Personal Access Token">
|
||||
|
||||
Navigate to your CrewAI AOP account settings to generate an API token:
|
||||
|
||||
1. Go to [app.crewai.com](https://app.crewai.com)
|
||||
2. Click on **Settings** → **Account** → **Personal Access Token**
|
||||
3. Generate a new token and copy it securely
|
||||
4. Store this token as a secret in your CI/CD system
|
||||
|
||||
</Step>
|
||||
|
||||
<Step title="Find Your Automation UUID">
|
||||
|
||||
Locate the unique identifier for your deployed crew:
|
||||
|
||||
1. Go to **Automations** in your CrewAI AOP dashboard
|
||||
2. Select your existing automation/crew
|
||||
3. Click on **Additional Details**
|
||||
4. Copy the **UUID** - this identifies your specific crew deployment
|
||||
|
||||
</Step>
|
||||
|
||||
<Step title="Trigger Redeployment via API">
|
||||
|
||||
Use the Deploy API endpoint to trigger a redeployment:
|
||||
|
||||
```bash
|
||||
curl -i -X POST \
|
||||
-H "Authorization: Bearer YOUR_PERSONAL_ACCESS_TOKEN" \
|
||||
https://app.crewai.com/crewai_plus/api/v1/crews/YOUR-AUTOMATION-UUID/deploy
|
||||
|
||||
# HTTP/2 200
|
||||
# content-type: application/json
|
||||
#
|
||||
# {
|
||||
# "uuid": "your-automation-uuid",
|
||||
# "status": "Deploy Enqueued",
|
||||
# "public_url": "https://your-crew-deployment.crewai.com",
|
||||
# "token": "your-bearer-token"
|
||||
# }
|
||||
```
|
||||
|
||||
<Info>
|
||||
If your automation was first created connected to Git, the API will automatically pull the latest changes from your repository before redeploying.
|
||||
</Info>
|
||||
|
||||
|
||||
</Step>
|
||||
|
||||
<Step title="GitHub Actions Integration Example">
|
||||
|
||||
Here's a GitHub Actions workflow with more complex deployment triggers:
|
||||
|
||||
```yaml
|
||||
name: Deploy CrewAI Automation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
release:
|
||||
types: [ published ]
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
if: |
|
||||
(github.event_name == 'push' && github.ref == 'refs/heads/main') ||
|
||||
(github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'deploy')) ||
|
||||
(github.event_name == 'release')
|
||||
steps:
|
||||
- name: Trigger CrewAI Redeployment
|
||||
run: |
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer ${{ secrets.CREWAI_PAT }}" \
|
||||
https://app.crewai.com/crewai_plus/api/v1/crews/${{ secrets.CREWAI_AUTOMATION_UUID }}/deploy
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Add `CREWAI_PAT` and `CREWAI_AUTOMATION_UUID` as repository secrets. For PR deployments, add a "deploy" label to trigger the workflow.
|
||||
</Tip>
|
||||
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
## ⚠️ Environment Variable Security Requirements
|
||||
|
||||
<Warning>
|
||||
|
||||
@@ -62,13 +62,13 @@ Test your Gmail trigger integration locally using the CrewAI CLI:
|
||||
crewai triggers list
|
||||
|
||||
# Simulate a Gmail trigger with realistic payload
|
||||
crewai triggers run gmail/new_email
|
||||
crewai triggers run gmail/new_email_received
|
||||
```
|
||||
|
||||
The `crewai triggers run` command will execute your crew with a complete Gmail payload, allowing you to test your parsing logic before deployment.
|
||||
|
||||
<Warning>
|
||||
Use `crewai triggers run gmail/new_email` (not `crewai run`) to simulate trigger execution during development. After deployment, your crew will automatically receive the trigger payload.
|
||||
Use `crewai triggers run gmail/new_email_received` (not `crewai run`) to simulate trigger execution during development. After deployment, your crew will automatically receive the trigger payload.
|
||||
</Warning>
|
||||
|
||||
## Monitoring Executions
|
||||
@@ -83,6 +83,6 @@ Track history and performance of triggered runs:
|
||||
|
||||
- Ensure Gmail is connected in Tools & Integrations
|
||||
- Verify the Gmail Trigger is enabled on the Triggers tab
|
||||
- Test locally with `crewai triggers run gmail/new_email` to see the exact payload structure
|
||||
- Test locally with `crewai triggers run gmail/new_email_received` to see the exact payload structure
|
||||
- Check the execution logs and confirm the payload is passed as `crewai_trigger_payload`
|
||||
- Remember: use `crewai triggers run` (not `crewai run`) to simulate trigger execution
|
||||
|
||||
581
docs/en/learn/human-feedback-in-flows.mdx
Normal file
581
docs/en/learn/human-feedback-in-flows.mdx
Normal file
@@ -0,0 +1,581 @@
|
||||
---
|
||||
title: Human Feedback in Flows
|
||||
description: Learn how to integrate human feedback directly into your CrewAI Flows using the @human_feedback decorator
|
||||
icon: user-check
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The `@human_feedback` decorator enables human-in-the-loop (HITL) workflows directly within CrewAI Flows. It allows you to pause flow execution, present output to a human for review, collect their feedback, and optionally route to different listeners based on the feedback outcome.
|
||||
|
||||
This is particularly valuable for:
|
||||
|
||||
- **Quality assurance**: Review AI-generated content before it's used downstream
|
||||
- **Decision gates**: Let humans make critical decisions in automated workflows
|
||||
- **Approval workflows**: Implement approve/reject/revise patterns
|
||||
- **Interactive refinement**: Collect feedback to improve outputs iteratively
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
A[Flow Method] --> B[Output Generated]
|
||||
B --> C[Human Reviews]
|
||||
C --> D{Feedback}
|
||||
D -->|emit specified| E[LLM Collapses to Outcome]
|
||||
D -->|no emit| F[HumanFeedbackResult]
|
||||
E --> G["@listen('approved')"]
|
||||
E --> H["@listen('rejected')"]
|
||||
F --> I[Next Listener]
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
Here's the simplest way to add human feedback to a flow:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback
|
||||
|
||||
class SimpleReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(message="Please review this content:")
|
||||
def generate_content(self):
|
||||
return "This is AI-generated content that needs review."
|
||||
|
||||
@listen(generate_content)
|
||||
def process_feedback(self, result):
|
||||
print(f"Content: {result.output}")
|
||||
print(f"Human said: {result.feedback}")
|
||||
|
||||
flow = SimpleReviewFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
When this flow runs, it will:
|
||||
1. Execute `generate_content` and return the string
|
||||
2. Display the output to the user with the request message
|
||||
3. Wait for the user to type feedback (or press Enter to skip)
|
||||
4. Pass a `HumanFeedbackResult` object to `process_feedback`
|
||||
|
||||
## The @human_feedback Decorator
|
||||
|
||||
### Parameters
|
||||
|
||||
| Parameter | Type | Required | Description |
|
||||
|-----------|------|----------|-------------|
|
||||
| `message` | `str` | Yes | The message shown to the human alongside the method output |
|
||||
| `emit` | `Sequence[str]` | No | List of possible outcomes. Feedback is collapsed to one of these, which triggers `@listen` decorators |
|
||||
| `llm` | `str \| BaseLLM` | When `emit` specified | LLM used to interpret feedback and map to an outcome |
|
||||
| `default_outcome` | `str` | No | Outcome to use if no feedback provided. Must be in `emit` |
|
||||
| `metadata` | `dict` | No | Additional data for enterprise integrations |
|
||||
| `provider` | `HumanFeedbackProvider` | No | Custom provider for async/non-blocking feedback. See [Async Human Feedback](#async-human-feedback-non-blocking) |
|
||||
|
||||
### Basic Usage (No Routing)
|
||||
|
||||
When you don't specify `emit`, the decorator simply collects feedback and passes a `HumanFeedbackResult` to the next listener:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="What do you think of this analysis?")
|
||||
def analyze_data(self):
|
||||
return "Analysis results: Revenue up 15%, costs down 8%"
|
||||
|
||||
@listen(analyze_data)
|
||||
def handle_feedback(self, result):
|
||||
# result is a HumanFeedbackResult
|
||||
print(f"Analysis: {result.output}")
|
||||
print(f"Feedback: {result.feedback}")
|
||||
```
|
||||
|
||||
### Routing with emit
|
||||
|
||||
When you specify `emit`, the decorator becomes a router. The human's free-form feedback is interpreted by an LLM and collapsed into one of the specified outcomes:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Do you approve this content for publication?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_content(self):
|
||||
return "Draft blog post content here..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"Publishing! User said: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def discard(self, result):
|
||||
print(f"Discarding. Reason: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise(self, result):
|
||||
print(f"Revising based on: {result.feedback}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
The LLM uses structured outputs (function calling) when available to guarantee the response is one of your specified outcomes. This makes routing reliable and predictable.
|
||||
</Tip>
|
||||
|
||||
## HumanFeedbackResult
|
||||
|
||||
The `HumanFeedbackResult` dataclass contains all information about a human feedback interaction:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
|
||||
@dataclass
|
||||
class HumanFeedbackResult:
|
||||
output: Any # The original method output shown to the human
|
||||
feedback: str # The raw feedback text from the human
|
||||
outcome: str | None # The collapsed outcome (if emit was specified)
|
||||
timestamp: datetime # When the feedback was received
|
||||
method_name: str # Name of the decorated method
|
||||
metadata: dict # Any metadata passed to the decorator
|
||||
```
|
||||
|
||||
### Accessing in Listeners
|
||||
|
||||
When a listener is triggered by a `@human_feedback` method with `emit`, it receives the `HumanFeedbackResult`:
|
||||
|
||||
```python Code
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"Original output: {result.output}")
|
||||
print(f"User feedback: {result.feedback}")
|
||||
print(f"Outcome: {result.outcome}") # "approved"
|
||||
print(f"Received at: {result.timestamp}")
|
||||
```
|
||||
|
||||
## Accessing Feedback History
|
||||
|
||||
The `Flow` class provides two attributes for accessing human feedback:
|
||||
|
||||
### last_human_feedback
|
||||
|
||||
Returns the most recent `HumanFeedbackResult`:
|
||||
|
||||
```python Code
|
||||
@listen(some_method)
|
||||
def check_feedback(self):
|
||||
if self.last_human_feedback:
|
||||
print(f"Last feedback: {self.last_human_feedback.feedback}")
|
||||
```
|
||||
|
||||
### human_feedback_history
|
||||
|
||||
A list of all `HumanFeedbackResult` objects collected during the flow:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def summarize(self):
|
||||
print(f"Total feedback collected: {len(self.human_feedback_history)}")
|
||||
for i, fb in enumerate(self.human_feedback_history):
|
||||
print(f"{i+1}. {fb.method_name}: {fb.outcome or 'no routing'}")
|
||||
```
|
||||
|
||||
<Warning>
|
||||
Each `HumanFeedbackResult` is appended to `human_feedback_history`, so multiple feedback steps won't overwrite each other. Use this list to access all feedback collected during the flow.
|
||||
</Warning>
|
||||
|
||||
## Complete Example: Content Approval Workflow
|
||||
|
||||
Here's a full example implementing a content review and approval workflow:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ContentState(BaseModel):
|
||||
topic: str = ""
|
||||
draft: str = ""
|
||||
final_content: str = ""
|
||||
revision_count: int = 0
|
||||
|
||||
|
||||
class ContentApprovalFlow(Flow[ContentState]):
|
||||
"""A flow that generates content and gets human approval."""
|
||||
|
||||
@start()
|
||||
def get_topic(self):
|
||||
self.state.topic = input("What topic should I write about? ")
|
||||
return self.state.topic
|
||||
|
||||
@listen(get_topic)
|
||||
def generate_draft(self, topic):
|
||||
# In real use, this would call an LLM
|
||||
self.state.draft = f"# {topic}\n\nThis is a draft about {topic}..."
|
||||
return self.state.draft
|
||||
|
||||
@listen(generate_draft)
|
||||
@human_feedback(
|
||||
message="Please review this draft. Reply 'approved', 'rejected', or provide revision feedback:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_draft(self, draft):
|
||||
return draft
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
self.state.final_content = result.output
|
||||
print("\n✅ Content approved and published!")
|
||||
print(f"Reviewer comment: {result.feedback}")
|
||||
return "published"
|
||||
|
||||
@listen("rejected")
|
||||
def handle_rejection(self, result: HumanFeedbackResult):
|
||||
print("\n❌ Content rejected")
|
||||
print(f"Reason: {result.feedback}")
|
||||
return "rejected"
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
self.state.revision_count += 1
|
||||
print(f"\n📝 Revision #{self.state.revision_count} requested")
|
||||
print(f"Feedback: {result.feedback}")
|
||||
|
||||
# In a real flow, you might loop back to generate_draft
|
||||
# For this example, we just acknowledge
|
||||
return "revision_requested"
|
||||
|
||||
|
||||
# Run the flow
|
||||
flow = ContentApprovalFlow()
|
||||
result = flow.kickoff()
|
||||
print(f"\nFlow completed. Revisions requested: {flow.state.revision_count}")
|
||||
```
|
||||
|
||||
```text Output
|
||||
What topic should I write about? AI Safety
|
||||
|
||||
==================================================
|
||||
OUTPUT FOR REVIEW:
|
||||
==================================================
|
||||
# AI Safety
|
||||
|
||||
This is a draft about AI Safety...
|
||||
==================================================
|
||||
|
||||
Please review this draft. Reply 'approved', 'rejected', or provide revision feedback:
|
||||
(Press Enter to skip, or type your feedback)
|
||||
|
||||
Your feedback: Looks good, approved!
|
||||
|
||||
✅ Content approved and published!
|
||||
Reviewer comment: Looks good, approved!
|
||||
|
||||
Flow completed. Revisions requested: 0
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Combining with Other Decorators
|
||||
|
||||
The `@human_feedback` decorator works with other flow decorators. Place it as the innermost decorator (closest to the function):
|
||||
|
||||
```python Code
|
||||
# Correct: @human_feedback is innermost (closest to the function)
|
||||
@start()
|
||||
@human_feedback(message="Review this:")
|
||||
def my_start_method(self):
|
||||
return "content"
|
||||
|
||||
@listen(other_method)
|
||||
@human_feedback(message="Review this too:")
|
||||
def my_listener(self, data):
|
||||
return f"processed: {data}"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Place `@human_feedback` as the innermost decorator (last/closest to the function) so it wraps the method directly and can capture the return value before passing to the flow system.
|
||||
</Tip>
|
||||
|
||||
## Best Practices
|
||||
|
||||
### 1. Write Clear Request Messages
|
||||
|
||||
The `request` parameter is what the human sees. Make it actionable:
|
||||
|
||||
```python Code
|
||||
# ✅ Good - clear and actionable
|
||||
@human_feedback(message="Does this summary accurately capture the key points? Reply 'yes' or explain what's missing:")
|
||||
|
||||
# ❌ Bad - vague
|
||||
@human_feedback(message="Review this:")
|
||||
```
|
||||
|
||||
### 2. Choose Meaningful Outcomes
|
||||
|
||||
When using `emit`, pick outcomes that map naturally to human responses:
|
||||
|
||||
```python Code
|
||||
# ✅ Good - natural language outcomes
|
||||
emit=["approved", "rejected", "needs_more_detail"]
|
||||
|
||||
# ❌ Bad - technical or unclear
|
||||
emit=["state_1", "state_2", "state_3"]
|
||||
```
|
||||
|
||||
### 3. Always Provide a Default Outcome
|
||||
|
||||
Use `default_outcome` to handle cases where users press Enter without typing:
|
||||
|
||||
```python Code
|
||||
@human_feedback(
|
||||
message="Approve? (press Enter to request revision)",
|
||||
emit=["approved", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision", # Safe default
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Use Feedback History for Audit Trails
|
||||
|
||||
Access `human_feedback_history` to create audit logs:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def create_audit_log(self):
|
||||
log = []
|
||||
for fb in self.human_feedback_history:
|
||||
log.append({
|
||||
"step": fb.method_name,
|
||||
"outcome": fb.outcome,
|
||||
"feedback": fb.feedback,
|
||||
"timestamp": fb.timestamp.isoformat(),
|
||||
})
|
||||
return log
|
||||
```
|
||||
|
||||
### 5. Handle Both Routed and Non-Routed Feedback
|
||||
|
||||
When designing flows, consider whether you need routing:
|
||||
|
||||
| Scenario | Use |
|
||||
|----------|-----|
|
||||
| Simple review, just need the feedback text | No `emit` |
|
||||
| Need to branch to different paths based on response | Use `emit` |
|
||||
| Approval gates with approve/reject/revise | Use `emit` |
|
||||
| Collecting comments for logging only | No `emit` |
|
||||
|
||||
## Async Human Feedback (Non-Blocking)
|
||||
|
||||
By default, `@human_feedback` blocks execution waiting for console input. For production applications, you may need **async/non-blocking** feedback that integrates with external systems like Slack, email, webhooks, or APIs.
|
||||
|
||||
### The Provider Abstraction
|
||||
|
||||
Use the `provider` parameter to specify a custom feedback collection strategy:
|
||||
|
||||
```python Code
|
||||
from crewai.flow import Flow, start, human_feedback, HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
|
||||
class WebhookProvider(HumanFeedbackProvider):
|
||||
"""Provider that pauses flow and waits for webhook callback."""
|
||||
|
||||
def __init__(self, webhook_url: str):
|
||||
self.webhook_url = webhook_url
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# Notify external system (e.g., send Slack message, create ticket)
|
||||
self.send_notification(context)
|
||||
|
||||
# Pause execution - framework handles persistence automatically
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={"webhook_url": f"{self.webhook_url}/{context.flow_id}"}
|
||||
)
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Review this content:",
|
||||
emit=["approved", "rejected"],
|
||||
llm="gpt-4o-mini",
|
||||
provider=WebhookProvider("https://myapp.com/api"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "AI-generated content..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
return "Published!"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
The flow framework **automatically persists state** when `HumanFeedbackPending` is raised. Your provider only needs to notify the external system and raise the exception—no manual persistence calls required.
|
||||
</Tip>
|
||||
|
||||
### Handling Paused Flows
|
||||
|
||||
When using an async provider, `kickoff()` returns a `HumanFeedbackPending` object instead of raising an exception:
|
||||
|
||||
```python Code
|
||||
flow = ReviewFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
# Flow is paused, state is automatically persisted
|
||||
print(f"Waiting for feedback at: {result.callback_info['webhook_url']}")
|
||||
print(f"Flow ID: {result.context.flow_id}")
|
||||
else:
|
||||
# Normal completion
|
||||
print(f"Flow completed: {result}")
|
||||
```
|
||||
|
||||
### Resuming a Paused Flow
|
||||
|
||||
When feedback arrives (e.g., via webhook), resume the flow:
|
||||
|
||||
```python Code
|
||||
# Sync handler:
|
||||
def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = flow.resume(feedback)
|
||||
return result
|
||||
|
||||
# Async handler (FastAPI, aiohttp, etc.):
|
||||
async def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = await flow.resume_async(feedback)
|
||||
return result
|
||||
```
|
||||
|
||||
### Key Types
|
||||
|
||||
| Type | Description |
|
||||
|------|-------------|
|
||||
| `HumanFeedbackProvider` | Protocol for custom feedback providers |
|
||||
| `PendingFeedbackContext` | Contains all info needed to resume a paused flow |
|
||||
| `HumanFeedbackPending` | Returned by `kickoff()` when flow is paused for feedback |
|
||||
| `ConsoleProvider` | Default blocking console input provider |
|
||||
|
||||
### PendingFeedbackContext
|
||||
|
||||
The context contains everything needed to resume:
|
||||
|
||||
```python Code
|
||||
@dataclass
|
||||
class PendingFeedbackContext:
|
||||
flow_id: str # Unique identifier for this flow execution
|
||||
flow_class: str # Fully qualified class name
|
||||
method_name: str # Method that triggered feedback
|
||||
method_output: Any # Output shown to the human
|
||||
message: str # The request message
|
||||
emit: list[str] | None # Possible outcomes for routing
|
||||
default_outcome: str | None
|
||||
metadata: dict # Custom metadata
|
||||
llm: str | None # LLM for outcome collapsing
|
||||
requested_at: datetime
|
||||
```
|
||||
|
||||
### Complete Async Flow Example
|
||||
|
||||
```python Code
|
||||
from crewai.flow import (
|
||||
Flow, start, listen, human_feedback,
|
||||
HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
)
|
||||
|
||||
class SlackNotificationProvider(HumanFeedbackProvider):
|
||||
"""Provider that sends Slack notifications and pauses for async feedback."""
|
||||
|
||||
def __init__(self, channel: str):
|
||||
self.channel = channel
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# Send Slack notification (implement your own)
|
||||
slack_thread_id = self.post_to_slack(
|
||||
channel=self.channel,
|
||||
message=f"Review needed:\n\n{context.method_output}\n\n{context.message}",
|
||||
)
|
||||
|
||||
# Pause execution - framework handles persistence automatically
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={
|
||||
"slack_channel": self.channel,
|
||||
"thread_id": slack_thread_id,
|
||||
}
|
||||
)
|
||||
|
||||
class ContentPipeline(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Approve this content for publication?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
provider=SlackNotificationProvider("#content-reviews"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "AI-generated blog post content..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"Publishing! Reviewer said: {result.feedback}")
|
||||
return {"status": "published"}
|
||||
|
||||
@listen("rejected")
|
||||
def archive(self, result):
|
||||
print(f"Archived. Reason: {result.feedback}")
|
||||
return {"status": "archived"}
|
||||
|
||||
@listen("needs_revision")
|
||||
def queue_revision(self, result):
|
||||
print(f"Queued for revision: {result.feedback}")
|
||||
return {"status": "revision_needed"}
|
||||
|
||||
|
||||
# Starting the flow (will pause and wait for Slack response)
|
||||
def start_content_pipeline():
|
||||
flow = ContentPipeline()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
return {"status": "pending", "flow_id": result.context.flow_id}
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# Resuming when Slack webhook fires (sync handler)
|
||||
def on_slack_feedback(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = flow.resume(slack_message)
|
||||
return result
|
||||
|
||||
|
||||
# If your handler is async (FastAPI, aiohttp, Slack Bolt async, etc.)
|
||||
async def on_slack_feedback_async(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = await flow.resume_async(slack_message)
|
||||
return result
|
||||
```
|
||||
|
||||
<Warning>
|
||||
If you're using an async web framework (FastAPI, aiohttp, Slack Bolt async mode), use `await flow.resume_async()` instead of `flow.resume()`. Calling `resume()` from within a running event loop will raise a `RuntimeError`.
|
||||
</Warning>
|
||||
|
||||
### Best Practices for Async Feedback
|
||||
|
||||
1. **Check the return type**: `kickoff()` returns `HumanFeedbackPending` when paused—no try/except needed
|
||||
2. **Use the right resume method**: Use `resume()` in sync code, `await resume_async()` in async code
|
||||
3. **Store callback info**: Use `callback_info` to store webhook URLs, ticket IDs, etc.
|
||||
4. **Implement idempotency**: Your resume handler should be idempotent for safety
|
||||
5. **Automatic persistence**: State is automatically saved when `HumanFeedbackPending` is raised and uses `SQLiteFlowPersistence` by default
|
||||
6. **Custom persistence**: Pass a custom persistence instance to `from_pending()` if needed
|
||||
|
||||
## Related Documentation
|
||||
|
||||
- [Flows Overview](/en/concepts/flows) - Learn about CrewAI Flows
|
||||
- [Flow State Management](/en/guides/flows/mastering-flow-state) - Managing state in flows
|
||||
- [Flow Persistence](/en/concepts/flows#persistence) - Persisting flow state
|
||||
- [Routing with @router](/en/concepts/flows#router) - More about conditional routing
|
||||
- [Human Input on Execution](/en/learn/human-input-on-execution) - Task-level human input
|
||||
@@ -5,9 +5,22 @@ icon: "user-check"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI.
|
||||
Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. CrewAI provides multiple ways to implement HITL depending on your needs.
|
||||
|
||||
## Setting Up HITL Workflows
|
||||
## Choosing Your HITL Approach
|
||||
|
||||
CrewAI offers two main approaches for implementing human-in-the-loop workflows:
|
||||
|
||||
| Approach | Best For | Integration |
|
||||
|----------|----------|-------------|
|
||||
| **Flow-based** (`@human_feedback` decorator) | Local development, console-based review, synchronous workflows | [Human Feedback in Flows](/en/learn/human-feedback-in-flows) |
|
||||
| **Webhook-based** (Enterprise) | Production deployments, async workflows, external integrations (Slack, Teams, etc.) | This guide |
|
||||
|
||||
<Tip>
|
||||
If you're building flows and want to add human review steps with routing based on feedback, check out the [Human Feedback in Flows](/en/learn/human-feedback-in-flows) guide for the `@human_feedback` decorator.
|
||||
</Tip>
|
||||
|
||||
## Setting Up Webhook-Based HITL Workflows
|
||||
|
||||
<Steps>
|
||||
<Step title="Configure Your Task">
|
||||
|
||||
@@ -35,7 +35,7 @@ info:
|
||||
|
||||
1. **Discover inputs** using `GET /inputs`
|
||||
2. **Start execution** using `POST /kickoff`
|
||||
3. **Monitor progress** using `GET /status/{kickoff_id}`
|
||||
3. **Monitor progress** using `GET /{kickoff_id}/status`
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI Support
|
||||
@@ -63,7 +63,7 @@ paths:
|
||||
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Successfully retrieved required inputs
|
||||
content:
|
||||
application/json:
|
||||
@@ -84,13 +84,21 @@ paths:
|
||||
outreach_crew:
|
||||
summary: Outreach crew inputs
|
||||
value:
|
||||
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
inputs:
|
||||
[
|
||||
"name",
|
||||
"title",
|
||||
"company",
|
||||
"industry",
|
||||
"our_product",
|
||||
"linkedin_url",
|
||||
]
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
$ref: "#/components/responses/NotFoundError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
@@ -170,7 +178,7 @@ paths:
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Crew execution started successfully
|
||||
content:
|
||||
application/json:
|
||||
@@ -182,24 +190,24 @@ paths:
|
||||
format: uuid
|
||||
description: Unique identifier for tracking this execution
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'400':
|
||||
"400":
|
||||
description: Invalid request body or missing required inputs
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'422':
|
||||
$ref: "#/components/schemas/Error"
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"422":
|
||||
description: Validation error - ensure all required inputs are provided
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/ValidationError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
$ref: "#/components/schemas/ValidationError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/status/{kickoff_id}:
|
||||
/{kickoff_id}/status:
|
||||
get:
|
||||
summary: Get Execution Status
|
||||
description: |
|
||||
@@ -222,15 +230,15 @@ paths:
|
||||
format: uuid
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Successfully retrieved execution status
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
- $ref: "#/components/schemas/ExecutionRunning"
|
||||
- $ref: "#/components/schemas/ExecutionCompleted"
|
||||
- $ref: "#/components/schemas/ExecutionError"
|
||||
examples:
|
||||
running:
|
||||
summary: Execution in progress
|
||||
@@ -262,19 +270,19 @@ paths:
|
||||
status: "error"
|
||||
error: "Task execution failed: Invalid API key for external service"
|
||||
execution_time: 23.1
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Kickoff ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Execution not found"
|
||||
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/resume:
|
||||
post:
|
||||
@@ -354,7 +362,7 @@ paths:
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Execution resumed successfully
|
||||
content:
|
||||
application/json:
|
||||
@@ -381,28 +389,28 @@ paths:
|
||||
value:
|
||||
status: "retrying"
|
||||
message: "Task will be retried with your feedback"
|
||||
'400':
|
||||
"400":
|
||||
description: Invalid request body or execution not in pending state
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Invalid Request"
|
||||
message: "Execution is not in pending human input state"
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Execution ID or Task ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "Execution ID not found"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
@@ -458,7 +466,7 @@ components:
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
$ref: "#/components/schemas/TaskResult"
|
||||
execution_time:
|
||||
type: number
|
||||
description: Total execution time in seconds
|
||||
@@ -536,7 +544,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Unauthorized"
|
||||
message: "Invalid or missing bearer token"
|
||||
@@ -546,7 +554,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "The requested resource was not found"
|
||||
@@ -556,7 +564,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Internal Server Error"
|
||||
message: "An unexpected error occurred"
|
||||
|
||||
@@ -35,7 +35,7 @@ info:
|
||||
|
||||
1. **Discover inputs** using `GET /inputs`
|
||||
2. **Start execution** using `POST /kickoff`
|
||||
3. **Monitor progress** using `GET /status/{kickoff_id}`
|
||||
3. **Monitor progress** using `GET /{kickoff_id}/status`
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI Support
|
||||
@@ -63,7 +63,7 @@ paths:
|
||||
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Successfully retrieved required inputs
|
||||
content:
|
||||
application/json:
|
||||
@@ -84,13 +84,21 @@ paths:
|
||||
outreach_crew:
|
||||
summary: Outreach crew inputs
|
||||
value:
|
||||
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
inputs:
|
||||
[
|
||||
"name",
|
||||
"title",
|
||||
"company",
|
||||
"industry",
|
||||
"our_product",
|
||||
"linkedin_url",
|
||||
]
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
$ref: "#/components/responses/NotFoundError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
@@ -170,7 +178,7 @@ paths:
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Crew execution started successfully
|
||||
content:
|
||||
application/json:
|
||||
@@ -182,24 +190,24 @@ paths:
|
||||
format: uuid
|
||||
description: Unique identifier for tracking this execution
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'400':
|
||||
"400":
|
||||
description: Invalid request body or missing required inputs
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'422':
|
||||
$ref: "#/components/schemas/Error"
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"422":
|
||||
description: Validation error - ensure all required inputs are provided
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/ValidationError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
$ref: "#/components/schemas/ValidationError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/status/{kickoff_id}:
|
||||
/{kickoff_id}/status:
|
||||
get:
|
||||
summary: Get Execution Status
|
||||
description: |
|
||||
@@ -222,15 +230,15 @@ paths:
|
||||
format: uuid
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Successfully retrieved execution status
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
- $ref: "#/components/schemas/ExecutionRunning"
|
||||
- $ref: "#/components/schemas/ExecutionCompleted"
|
||||
- $ref: "#/components/schemas/ExecutionError"
|
||||
examples:
|
||||
running:
|
||||
summary: Execution in progress
|
||||
@@ -262,19 +270,19 @@ paths:
|
||||
status: "error"
|
||||
error: "Task execution failed: Invalid API key for external service"
|
||||
execution_time: 23.1
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Kickoff ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Execution not found"
|
||||
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/resume:
|
||||
post:
|
||||
@@ -354,7 +362,7 @@ paths:
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Execution resumed successfully
|
||||
content:
|
||||
application/json:
|
||||
@@ -381,28 +389,28 @@ paths:
|
||||
value:
|
||||
status: "retrying"
|
||||
message: "Task will be retried with your feedback"
|
||||
'400':
|
||||
"400":
|
||||
description: Invalid request body or execution not in pending state
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Invalid Request"
|
||||
message: "Execution is not in pending human input state"
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Execution ID or Task ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "Execution ID not found"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
@@ -458,7 +466,7 @@ components:
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
$ref: "#/components/schemas/TaskResult"
|
||||
execution_time:
|
||||
type: number
|
||||
description: Total execution time in seconds
|
||||
@@ -536,7 +544,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Unauthorized"
|
||||
message: "Invalid or missing bearer token"
|
||||
@@ -546,7 +554,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "The requested resource was not found"
|
||||
@@ -556,7 +564,7 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Internal Server Error"
|
||||
message: "An unexpected error occurred"
|
||||
|
||||
@@ -84,7 +84,7 @@ paths:
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/status/{kickoff_id}:
|
||||
/{kickoff_id}/status:
|
||||
get:
|
||||
summary: 실행 상태 조회
|
||||
description: |
|
||||
|
||||
@@ -35,7 +35,7 @@ info:
|
||||
|
||||
1. **Descubra os inputs** usando `GET /inputs`
|
||||
2. **Inicie a execução** usando `POST /kickoff`
|
||||
3. **Monitore o progresso** usando `GET /status/{kickoff_id}`
|
||||
3. **Monitore o progresso** usando `GET /{kickoff_id}/status`
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI Suporte
|
||||
@@ -56,7 +56,7 @@ paths:
|
||||
Retorna a lista de parâmetros de entrada que sua crew espera.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Inputs requeridos obtidos com sucesso
|
||||
content:
|
||||
application/json:
|
||||
@@ -69,12 +69,12 @@ paths:
|
||||
type: string
|
||||
description: Nomes dos parâmetros de entrada
|
||||
example: ["budget", "interests", "duration", "age"]
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
$ref: "#/components/responses/NotFoundError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
@@ -104,7 +104,7 @@ paths:
|
||||
age: "35"
|
||||
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Execução iniciada com sucesso
|
||||
content:
|
||||
application/json:
|
||||
@@ -115,12 +115,12 @@ paths:
|
||||
type: string
|
||||
format: uuid
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/status/{kickoff_id}:
|
||||
/{kickoff_id}/status:
|
||||
get:
|
||||
summary: Obter Status da Execução
|
||||
description: |
|
||||
@@ -136,25 +136,25 @@ paths:
|
||||
type: string
|
||||
format: uuid
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Status recuperado com sucesso
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
- $ref: "#/components/schemas/ExecutionRunning"
|
||||
- $ref: "#/components/schemas/ExecutionCompleted"
|
||||
- $ref: "#/components/schemas/ExecutionError"
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Kickoff ID não encontrado
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
$ref: "#/components/schemas/Error"
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
/resume:
|
||||
post:
|
||||
@@ -234,7 +234,7 @@ paths:
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
"200":
|
||||
description: Execution resumed successfully
|
||||
content:
|
||||
application/json:
|
||||
@@ -261,28 +261,28 @@ paths:
|
||||
value:
|
||||
status: "retrying"
|
||||
message: "Task will be retried with your feedback"
|
||||
'400':
|
||||
"400":
|
||||
description: Invalid request body or execution not in pending state
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Invalid Request"
|
||||
message: "Execution is not in pending human input state"
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
"401":
|
||||
$ref: "#/components/responses/UnauthorizedError"
|
||||
"404":
|
||||
description: Execution ID or Task ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "Execution ID not found"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
"500":
|
||||
$ref: "#/components/responses/ServerError"
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
@@ -324,7 +324,7 @@ components:
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
$ref: "#/components/schemas/TaskResult"
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
@@ -380,16 +380,16 @@ components:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
NotFoundError:
|
||||
description: Recurso não encontrado
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
ServerError:
|
||||
description: Erro interno do servidor
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
$ref: "#/components/schemas/Error"
|
||||
|
||||
@@ -16,16 +16,17 @@ CrewAI 엔터프라이즈 API 참고 자료에 오신 것을 환영합니다.
|
||||
CrewAI AOP 대시보드에서 자신의 crew 상세 페이지로 이동하여 Status 탭에서 Bearer Token을 복사하세요.
|
||||
</Step>
|
||||
|
||||
<Step title="필수 입력값 확인하기">
|
||||
`GET /inputs` 엔드포인트를 사용하여 crew가 기대하는 파라미터를 확인하세요.
|
||||
</Step>
|
||||
<Step title="필수 입력값 확인하기">
|
||||
`GET /inputs` 엔드포인트를 사용하여 crew가 기대하는 파라미터를 확인하세요.
|
||||
</Step>
|
||||
|
||||
<Step title="Crew 실행 시작하기">
|
||||
입력값과 함께 `POST /kickoff`를 호출하여 crew 실행을 시작하고 `kickoff_id`를 받으세요.
|
||||
</Step>
|
||||
<Step title="Crew 실행 시작하기">
|
||||
입력값과 함께 `POST /kickoff`를 호출하여 crew 실행을 시작하고 `kickoff_id`를
|
||||
받으세요.
|
||||
</Step>
|
||||
|
||||
<Step title="진행 상황 모니터링">
|
||||
`GET /status/{kickoff_id}`를 사용하여 실행 상태를 확인하고 결과를 조회하세요.
|
||||
`GET /{kickoff_id}/status`를 사용하여 실행 상태를 확인하고 결과를 조회하세요.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
@@ -40,13 +41,14 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
|
||||
|
||||
### 토큰 유형
|
||||
|
||||
| 토큰 유형 | 범위 | 사용 사례 |
|
||||
|:-----------|:--------|:----------|
|
||||
| **Bearer Token** | 조직 단위 접근 | 전체 crew 운영, 서버 간 통합에 이상적 |
|
||||
| **User Bearer Token** | 사용자 범위 접근 | 제한된 권한, 사용자별 작업에 적합 |
|
||||
| 토큰 유형 | 범위 | 사용 사례 |
|
||||
| :-------------------- | :--------------- | :------------------------------------ |
|
||||
| **Bearer Token** | 조직 단위 접근 | 전체 crew 운영, 서버 간 통합에 이상적 |
|
||||
| **User Bearer Token** | 사용자 범위 접근 | 제한된 권한, 사용자별 작업에 적합 |
|
||||
|
||||
<Tip>
|
||||
두 토큰 유형 모두 CrewAI AOP 대시보드의 crew 상세 페이지 Status 탭에서 확인할 수 있습니다.
|
||||
두 토큰 유형 모두 CrewAI AOP 대시보드의 crew 상세 페이지 Status 탭에서 확인할
|
||||
수 있습니다.
|
||||
</Tip>
|
||||
|
||||
## 기본 URL
|
||||
@@ -63,29 +65,33 @@ https://your-crew-name.crewai.com
|
||||
|
||||
1. **탐색**: `GET /inputs`를 호출하여 crew가 필요한 것을 파악합니다.
|
||||
2. **실행**: `POST /kickoff`를 통해 입력값을 제출하여 처리를 시작합니다.
|
||||
3. **모니터링**: 완료될 때까지 `GET /status/{kickoff_id}`를 주기적으로 조회합니다.
|
||||
3. **모니터링**: 완료될 때까지 `GET /{kickoff_id}/status`를 주기적으로 조회합니다.
|
||||
4. **결과**: 완료된 응답에서 최종 출력을 추출합니다.
|
||||
|
||||
## 오류 처리
|
||||
|
||||
API는 표준 HTTP 상태 코드를 사용합니다:
|
||||
|
||||
| 코드 | 의미 |
|
||||
|------|:--------|
|
||||
| `200` | 성공 |
|
||||
| `400` | 잘못된 요청 - 잘못된 입력 형식 |
|
||||
| `401` | 인증 실패 - 잘못된 베어러 토큰 |
|
||||
| 코드 | 의미 |
|
||||
| ----- | :------------------------------------ |
|
||||
| `200` | 성공 |
|
||||
| `400` | 잘못된 요청 - 잘못된 입력 형식 |
|
||||
| `401` | 인증 실패 - 잘못된 베어러 토큰 |
|
||||
| `404` | 찾을 수 없음 - 리소스가 존재하지 않음 |
|
||||
| `422` | 유효성 검사 오류 - 필수 입력 누락 |
|
||||
| `500` | 서버 오류 - 지원팀에 문의하십시오 |
|
||||
| `422` | 유효성 검사 오류 - 필수 입력 누락 |
|
||||
| `500` | 서버 오류 - 지원팀에 문의하십시오 |
|
||||
|
||||
## 인터랙티브 테스트
|
||||
|
||||
<Info>
|
||||
**왜 "전송" 버튼이 없나요?** 각 CrewAI AOP 사용자는 고유한 crew URL을 가지므로, 혼동을 피하기 위해 인터랙티브 플레이그라운드 대신 **참조 모드**를 사용합니다. 이를 통해 비작동 전송 버튼 없이 요청이 어떻게 생겼는지 정확히 보여줍니다.
|
||||
**왜 "전송" 버튼이 없나요?** 각 CrewAI AOP 사용자는 고유한 crew URL을
|
||||
가지므로, 혼동을 피하기 위해 인터랙티브 플레이그라운드 대신 **참조 모드**를
|
||||
사용합니다. 이를 통해 비작동 전송 버튼 없이 요청이 어떻게 생겼는지 정확히
|
||||
보여줍니다.
|
||||
</Info>
|
||||
|
||||
각 엔드포인트 페이지에서는 다음을 확인할 수 있습니다:
|
||||
|
||||
- ✅ 모든 파라미터가 포함된 **정확한 요청 형식**
|
||||
- ✅ 성공 및 오류 사례에 대한 **응답 예시**
|
||||
- ✅ 여러 언어(cURL, Python, JavaScript 등)로 제공되는 **코드 샘플**
|
||||
@@ -103,6 +109,7 @@ API는 표준 HTTP 상태 코드를 사용합니다:
|
||||
</CardGroup>
|
||||
|
||||
**예시 작업 흐름:**
|
||||
|
||||
1. **cURL 예제를 복사**합니다 (엔드포인트 페이지에서)
|
||||
2. **`your-actual-crew-name.crewai.com`**을(를) 실제 crew URL로 교체합니다
|
||||
3. **Bearer 토큰을** 대시보드에서 복사한 실제 토큰으로 교체합니다
|
||||
@@ -111,10 +118,18 @@ API는 표준 HTTP 상태 코드를 사용합니다:
|
||||
## 도움이 필요하신가요?
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
|
||||
<Card
|
||||
title="Enterprise Support"
|
||||
icon="headset"
|
||||
href="mailto:support@crewai.com"
|
||||
>
|
||||
API 통합 및 문제 해결에 대한 지원을 받으세요
|
||||
</Card>
|
||||
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
|
||||
<Card
|
||||
title="Enterprise Dashboard"
|
||||
icon="chart-line"
|
||||
href="https://app.crewai.com"
|
||||
>
|
||||
crew를 관리하고 실행 로그를 확인하세요
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
---
|
||||
title: "GET /status/{kickoff_id}"
|
||||
title: "GET /{kickoff_id}/status"
|
||||
description: "실행 상태 조회"
|
||||
openapi: "/enterprise-api.ko.yaml GET /status/{kickoff_id}"
|
||||
openapi: "/enterprise-api.ko.yaml GET /{kickoff_id}/status"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
|
||||
|
||||
@@ -565,6 +565,55 @@ Fourth method running
|
||||
|
||||
이 Flow를 실행하면, `start_method`에서 생성된 랜덤 불리언 값에 따라 출력값이 달라집니다.
|
||||
|
||||
### Human in the Loop (인간 피드백)
|
||||
|
||||
`@human_feedback` 데코레이터는 인간의 피드백을 수집하기 위해 플로우 실행을 일시 중지하는 human-in-the-loop 워크플로우를 가능하게 합니다. 이는 승인 게이트, 품질 검토, 인간의 판단이 필요한 결정 지점에 유용합니다.
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="이 콘텐츠를 승인하시겠습니까?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def generate_content(self):
|
||||
return "검토할 콘텐츠..."
|
||||
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"승인됨! 피드백: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def on_rejection(self, result: HumanFeedbackResult):
|
||||
print(f"거부됨. 이유: {result.feedback}")
|
||||
```
|
||||
|
||||
`emit`이 지정되면, 인간의 자유 형식 피드백이 LLM에 의해 해석되어 지정된 outcome 중 하나로 매핑되고, 해당 `@listen` 데코레이터를 트리거합니다.
|
||||
|
||||
라우팅 없이 단순히 피드백만 수집할 수도 있습니다:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="이 출력에 대한 코멘트가 있으신가요?")
|
||||
def my_method(self):
|
||||
return "검토할 출력"
|
||||
|
||||
@listen(my_method)
|
||||
def next_step(self, result: HumanFeedbackResult):
|
||||
# result.feedback로 피드백에 접근
|
||||
# result.output으로 원래 출력에 접근
|
||||
pass
|
||||
```
|
||||
|
||||
플로우 실행 중 수집된 모든 피드백은 `self.last_human_feedback` (가장 최근) 또는 `self.human_feedback_history` (리스트 형태의 모든 피드백)를 통해 접근할 수 있습니다.
|
||||
|
||||
플로우에서의 인간 피드백에 대한 완전한 가이드는 비동기/논블로킹 피드백과 커스텀 프로바이더(Slack, 웹훅 등)를 포함하여 [Flow에서 인간 피드백](/ko/learn/human-feedback-in-flows)을 참조하세요.
|
||||
|
||||
## 플로우에 에이전트 추가하기
|
||||
|
||||
에이전트는 플로우에 원활하게 통합할 수 있으며, 단순하고 집중된 작업 실행이 필요할 때 전체 Crew의 경량 대안으로 활용됩니다. 아래는 에이전트를 플로우 내에서 사용하여 시장 조사를 수행하는 예시입니다:
|
||||
|
||||
@@ -62,13 +62,13 @@ CrewAI CLI를 사용하여 Gmail 트리거 통합을 로컬에서 테스트하
|
||||
crewai triggers list
|
||||
|
||||
# 실제 payload로 Gmail 트리거 시뮬레이션
|
||||
crewai triggers run gmail/new_email
|
||||
crewai triggers run gmail/new_email_received
|
||||
```
|
||||
|
||||
`crewai triggers run` 명령은 완전한 Gmail payload로 크루를 실행하여 배포 전에 파싱 로직을 테스트할 수 있게 해줍니다.
|
||||
|
||||
<Warning>
|
||||
개발 중에는 `crewai triggers run gmail/new_email`을 사용하세요 (`crewai run`이 아님). 배포 후에는 크루가 자동으로 트리거 payload를 받습니다.
|
||||
개발 중에는 `crewai triggers run gmail/new_email_received`을 사용하세요 (`crewai run`이 아님). 배포 후에는 크루가 자동으로 트리거 payload를 받습니다.
|
||||
</Warning>
|
||||
|
||||
## Monitoring Executions
|
||||
@@ -83,6 +83,6 @@ Track history and performance of triggered runs:
|
||||
|
||||
- Ensure Gmail is connected in Tools & Integrations
|
||||
- Verify the Gmail Trigger is enabled on the Triggers tab
|
||||
- `crewai triggers run gmail/new_email`로 로컬 테스트하여 정확한 payload 구조를 확인하세요
|
||||
- `crewai triggers run gmail/new_email_received`로 로컬 테스트하여 정확한 payload 구조를 확인하세요
|
||||
- Check the execution logs and confirm the payload is passed as `crewai_trigger_payload`
|
||||
- 주의: 트리거 실행을 시뮬레이션하려면 `crewai triggers run`을 사용하세요 (`crewai run`이 아님)
|
||||
|
||||
581
docs/ko/learn/human-feedback-in-flows.mdx
Normal file
581
docs/ko/learn/human-feedback-in-flows.mdx
Normal file
@@ -0,0 +1,581 @@
|
||||
---
|
||||
title: Flow에서 인간 피드백
|
||||
description: "@human_feedback 데코레이터를 사용하여 CrewAI Flow에 인간 피드백을 직접 통합하는 방법을 알아보세요"
|
||||
icon: user-check
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
## 개요
|
||||
|
||||
`@human_feedback` 데코레이터는 CrewAI Flow 내에서 직접 human-in-the-loop(HITL) 워크플로우를 가능하게 합니다. Flow 실행을 일시 중지하고, 인간에게 검토를 위해 출력을 제시하고, 피드백을 수집하고, 선택적으로 피드백 결과에 따라 다른 리스너로 라우팅할 수 있습니다.
|
||||
|
||||
이는 특히 다음과 같은 경우에 유용합니다:
|
||||
|
||||
- **품질 보증**: AI가 생성한 콘텐츠를 다운스트림에서 사용하기 전에 검토
|
||||
- **결정 게이트**: 자동화된 워크플로우에서 인간이 중요한 결정을 내리도록 허용
|
||||
- **승인 워크플로우**: 승인/거부/수정 패턴 구현
|
||||
- **대화형 개선**: 출력을 반복적으로 개선하기 위해 피드백 수집
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
A[Flow 메서드] --> B[출력 생성됨]
|
||||
B --> C[인간이 검토]
|
||||
C --> D{피드백}
|
||||
D -->|emit 지정됨| E[LLM이 Outcome으로 매핑]
|
||||
D -->|emit 없음| F[HumanFeedbackResult]
|
||||
E --> G["@listen('approved')"]
|
||||
E --> H["@listen('rejected')"]
|
||||
F --> I[다음 리스너]
|
||||
```
|
||||
|
||||
## 빠른 시작
|
||||
|
||||
Flow에 인간 피드백을 추가하는 가장 간단한 방법은 다음과 같습니다:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback
|
||||
|
||||
class SimpleReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(message="이 콘텐츠를 검토해 주세요:")
|
||||
def generate_content(self):
|
||||
return "검토가 필요한 AI 생성 콘텐츠입니다."
|
||||
|
||||
@listen(generate_content)
|
||||
def process_feedback(self, result):
|
||||
print(f"콘텐츠: {result.output}")
|
||||
print(f"인간의 의견: {result.feedback}")
|
||||
|
||||
flow = SimpleReviewFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
이 Flow를 실행하면:
|
||||
1. `generate_content`를 실행하고 문자열을 반환합니다
|
||||
2. 요청 메시지와 함께 사용자에게 출력을 표시합니다
|
||||
3. 사용자가 피드백을 입력할 때까지 대기합니다 (또는 Enter를 눌러 건너뜁니다)
|
||||
4. `HumanFeedbackResult` 객체를 `process_feedback`에 전달합니다
|
||||
|
||||
## @human_feedback 데코레이터
|
||||
|
||||
### 매개변수
|
||||
|
||||
| 매개변수 | 타입 | 필수 | 설명 |
|
||||
|----------|------|------|------|
|
||||
| `message` | `str` | 예 | 메서드 출력과 함께 인간에게 표시되는 메시지 |
|
||||
| `emit` | `Sequence[str]` | 아니오 | 가능한 outcome 목록. 피드백이 이 중 하나로 매핑되어 `@listen` 데코레이터를 트리거합니다 |
|
||||
| `llm` | `str \| BaseLLM` | `emit` 지정 시 | 피드백을 해석하고 outcome에 매핑하는 데 사용되는 LLM |
|
||||
| `default_outcome` | `str` | 아니오 | 피드백이 제공되지 않을 때 사용할 outcome. `emit`에 있어야 합니다 |
|
||||
| `metadata` | `dict` | 아니오 | 엔터프라이즈 통합을 위한 추가 데이터 |
|
||||
| `provider` | `HumanFeedbackProvider` | 아니오 | 비동기/논블로킹 피드백을 위한 커스텀 프로바이더. [비동기 인간 피드백](#비동기-인간-피드백-논블로킹) 참조 |
|
||||
|
||||
### 기본 사용법 (라우팅 없음)
|
||||
|
||||
`emit`을 지정하지 않으면, 데코레이터는 단순히 피드백을 수집하고 다음 리스너에 `HumanFeedbackResult`를 전달합니다:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="이 분석에 대해 어떻게 생각하시나요?")
|
||||
def analyze_data(self):
|
||||
return "분석 결과: 매출 15% 증가, 비용 8% 감소"
|
||||
|
||||
@listen(analyze_data)
|
||||
def handle_feedback(self, result):
|
||||
# result는 HumanFeedbackResult입니다
|
||||
print(f"분석: {result.output}")
|
||||
print(f"피드백: {result.feedback}")
|
||||
```
|
||||
|
||||
### emit을 사용한 라우팅
|
||||
|
||||
`emit`을 지정하면, 데코레이터는 라우터가 됩니다. 인간의 자유 형식 피드백이 LLM에 의해 해석되어 지정된 outcome 중 하나로 매핑됩니다:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="이 콘텐츠의 출판을 승인하시겠습니까?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_content(self):
|
||||
return "블로그 게시물 초안 내용..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"출판 중! 사용자 의견: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def discard(self, result):
|
||||
print(f"폐기됨. 이유: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise(self, result):
|
||||
print(f"다음을 기반으로 수정 중: {result.feedback}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
LLM은 가능한 경우 구조화된 출력(function calling)을 사용하여 응답이 지정된 outcome 중 하나임을 보장합니다. 이로 인해 라우팅이 신뢰할 수 있고 예측 가능해집니다.
|
||||
</Tip>
|
||||
|
||||
## HumanFeedbackResult
|
||||
|
||||
`HumanFeedbackResult` 데이터클래스는 인간 피드백 상호작용에 대한 모든 정보를 포함합니다:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
|
||||
@dataclass
|
||||
class HumanFeedbackResult:
|
||||
output: Any # 인간에게 표시된 원래 메서드 출력
|
||||
feedback: str # 인간의 원시 피드백 텍스트
|
||||
outcome: str | None # 매핑된 outcome (emit이 지정된 경우)
|
||||
timestamp: datetime # 피드백이 수신된 시간
|
||||
method_name: str # 데코레이터된 메서드의 이름
|
||||
metadata: dict # 데코레이터에 전달된 모든 메타데이터
|
||||
```
|
||||
|
||||
### 리스너에서 접근하기
|
||||
|
||||
`emit`이 있는 `@human_feedback` 메서드에 의해 리스너가 트리거되면, `HumanFeedbackResult`를 받습니다:
|
||||
|
||||
```python Code
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"원래 출력: {result.output}")
|
||||
print(f"사용자 피드백: {result.feedback}")
|
||||
print(f"Outcome: {result.outcome}") # "approved"
|
||||
print(f"수신 시간: {result.timestamp}")
|
||||
```
|
||||
|
||||
## 피드백 히스토리 접근하기
|
||||
|
||||
`Flow` 클래스는 인간 피드백에 접근하기 위한 두 가지 속성을 제공합니다:
|
||||
|
||||
### last_human_feedback
|
||||
|
||||
가장 최근의 `HumanFeedbackResult`를 반환합니다:
|
||||
|
||||
```python Code
|
||||
@listen(some_method)
|
||||
def check_feedback(self):
|
||||
if self.last_human_feedback:
|
||||
print(f"마지막 피드백: {self.last_human_feedback.feedback}")
|
||||
```
|
||||
|
||||
### human_feedback_history
|
||||
|
||||
Flow 동안 수집된 모든 `HumanFeedbackResult` 객체의 리스트입니다:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def summarize(self):
|
||||
print(f"수집된 총 피드백: {len(self.human_feedback_history)}")
|
||||
for i, fb in enumerate(self.human_feedback_history):
|
||||
print(f"{i+1}. {fb.method_name}: {fb.outcome or '라우팅 없음'}")
|
||||
```
|
||||
|
||||
<Warning>
|
||||
각 `HumanFeedbackResult`는 `human_feedback_history`에 추가되므로, 여러 피드백 단계가 서로 덮어쓰지 않습니다. 이 리스트를 사용하여 Flow 동안 수집된 모든 피드백에 접근하세요.
|
||||
</Warning>
|
||||
|
||||
## 완전한 예제: 콘텐츠 승인 워크플로우
|
||||
|
||||
콘텐츠 검토 및 승인 워크플로우를 구현하는 전체 예제입니다:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ContentState(BaseModel):
|
||||
topic: str = ""
|
||||
draft: str = ""
|
||||
final_content: str = ""
|
||||
revision_count: int = 0
|
||||
|
||||
|
||||
class ContentApprovalFlow(Flow[ContentState]):
|
||||
"""콘텐츠를 생성하고 인간의 승인을 받는 Flow입니다."""
|
||||
|
||||
@start()
|
||||
def get_topic(self):
|
||||
self.state.topic = input("어떤 주제에 대해 글을 쓸까요? ")
|
||||
return self.state.topic
|
||||
|
||||
@listen(get_topic)
|
||||
def generate_draft(self, topic):
|
||||
# 실제 사용에서는 LLM을 호출합니다
|
||||
self.state.draft = f"# {topic}\n\n{topic}에 대한 초안입니다..."
|
||||
return self.state.draft
|
||||
|
||||
@listen(generate_draft)
|
||||
@human_feedback(
|
||||
message="이 초안을 검토해 주세요. 'approved', 'rejected'로 답하거나 수정 피드백을 제공해 주세요:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_draft(self, draft):
|
||||
return draft
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
self.state.final_content = result.output
|
||||
print("\n✅ 콘텐츠가 승인되어 출판되었습니다!")
|
||||
print(f"검토자 코멘트: {result.feedback}")
|
||||
return "published"
|
||||
|
||||
@listen("rejected")
|
||||
def handle_rejection(self, result: HumanFeedbackResult):
|
||||
print("\n❌ 콘텐츠가 거부되었습니다")
|
||||
print(f"이유: {result.feedback}")
|
||||
return "rejected"
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
self.state.revision_count += 1
|
||||
print(f"\n📝 수정 #{self.state.revision_count} 요청됨")
|
||||
print(f"피드백: {result.feedback}")
|
||||
|
||||
# 실제 Flow에서는 generate_draft로 돌아갈 수 있습니다
|
||||
# 이 예제에서는 단순히 확인합니다
|
||||
return "revision_requested"
|
||||
|
||||
|
||||
# Flow 실행
|
||||
flow = ContentApprovalFlow()
|
||||
result = flow.kickoff()
|
||||
print(f"\nFlow 완료. 요청된 수정: {flow.state.revision_count}")
|
||||
```
|
||||
|
||||
```text Output
|
||||
어떤 주제에 대해 글을 쓸까요? AI 안전
|
||||
|
||||
==================================================
|
||||
OUTPUT FOR REVIEW:
|
||||
==================================================
|
||||
# AI 안전
|
||||
|
||||
AI 안전에 대한 초안입니다...
|
||||
==================================================
|
||||
|
||||
이 초안을 검토해 주세요. 'approved', 'rejected'로 답하거나 수정 피드백을 제공해 주세요:
|
||||
(Press Enter to skip, or type your feedback)
|
||||
|
||||
Your feedback: 좋아 보입니다, 승인!
|
||||
|
||||
✅ 콘텐츠가 승인되어 출판되었습니다!
|
||||
검토자 코멘트: 좋아 보입니다, 승인!
|
||||
|
||||
Flow 완료. 요청된 수정: 0
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## 다른 데코레이터와 결합하기
|
||||
|
||||
`@human_feedback` 데코레이터는 다른 Flow 데코레이터와 함께 작동합니다. 가장 안쪽 데코레이터(함수에 가장 가까운)로 배치하세요:
|
||||
|
||||
```python Code
|
||||
# 올바름: @human_feedback이 가장 안쪽(함수에 가장 가까움)
|
||||
@start()
|
||||
@human_feedback(message="이것을 검토해 주세요:")
|
||||
def my_start_method(self):
|
||||
return "content"
|
||||
|
||||
@listen(other_method)
|
||||
@human_feedback(message="이것도 검토해 주세요:")
|
||||
def my_listener(self, data):
|
||||
return f"processed: {data}"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
`@human_feedback`를 가장 안쪽 데코레이터(마지막/함수에 가장 가까움)로 배치하여 메서드를 직접 래핑하고 Flow 시스템에 전달하기 전에 반환 값을 캡처할 수 있도록 하세요.
|
||||
</Tip>
|
||||
|
||||
## 모범 사례
|
||||
|
||||
### 1. 명확한 요청 메시지 작성
|
||||
|
||||
`message` 매개변수는 인간이 보는 것입니다. 실행 가능하게 만드세요:
|
||||
|
||||
```python Code
|
||||
# ✅ 좋음 - 명확하고 실행 가능
|
||||
@human_feedback(message="이 요약이 핵심 포인트를 정확하게 캡처했나요? '예'로 답하거나 무엇이 빠졌는지 설명해 주세요:")
|
||||
|
||||
# ❌ 나쁨 - 모호함
|
||||
@human_feedback(message="이것을 검토해 주세요:")
|
||||
```
|
||||
|
||||
### 2. 의미 있는 Outcome 선택
|
||||
|
||||
`emit`을 사용할 때, 인간의 응답에 자연스럽게 매핑되는 outcome을 선택하세요:
|
||||
|
||||
```python Code
|
||||
# ✅ 좋음 - 자연어 outcome
|
||||
emit=["approved", "rejected", "needs_more_detail"]
|
||||
|
||||
# ❌ 나쁨 - 기술적이거나 불명확
|
||||
emit=["state_1", "state_2", "state_3"]
|
||||
```
|
||||
|
||||
### 3. 항상 기본 Outcome 제공
|
||||
|
||||
사용자가 입력 없이 Enter를 누르는 경우를 처리하기 위해 `default_outcome`을 사용하세요:
|
||||
|
||||
```python Code
|
||||
@human_feedback(
|
||||
message="승인하시겠습니까? (수정 요청하려면 Enter 누르세요)",
|
||||
emit=["approved", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision", # 안전한 기본값
|
||||
)
|
||||
```
|
||||
|
||||
### 4. 감사 추적을 위한 피드백 히스토리 사용
|
||||
|
||||
감사 로그를 생성하기 위해 `human_feedback_history`에 접근하세요:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def create_audit_log(self):
|
||||
log = []
|
||||
for fb in self.human_feedback_history:
|
||||
log.append({
|
||||
"step": fb.method_name,
|
||||
"outcome": fb.outcome,
|
||||
"feedback": fb.feedback,
|
||||
"timestamp": fb.timestamp.isoformat(),
|
||||
})
|
||||
return log
|
||||
```
|
||||
|
||||
### 5. 라우팅된 피드백과 라우팅되지 않은 피드백 모두 처리
|
||||
|
||||
Flow를 설계할 때, 라우팅이 필요한지 고려하세요:
|
||||
|
||||
| 시나리오 | 사용 |
|
||||
|----------|------|
|
||||
| 간단한 검토, 피드백 텍스트만 필요 | `emit` 없음 |
|
||||
| 응답에 따라 다른 경로로 분기 필요 | `emit` 사용 |
|
||||
| 승인/거부/수정이 있는 승인 게이트 | `emit` 사용 |
|
||||
| 로깅만을 위한 코멘트 수집 | `emit` 없음 |
|
||||
|
||||
## 비동기 인간 피드백 (논블로킹)
|
||||
|
||||
기본적으로 `@human_feedback`은 콘솔 입력을 기다리며 실행을 차단합니다. 프로덕션 애플리케이션에서는 Slack, 이메일, 웹훅 또는 API와 같은 외부 시스템과 통합되는 **비동기/논블로킹** 피드백이 필요할 수 있습니다.
|
||||
|
||||
### Provider 추상화
|
||||
|
||||
커스텀 피드백 수집 전략을 지정하려면 `provider` 매개변수를 사용하세요:
|
||||
|
||||
```python Code
|
||||
from crewai.flow import Flow, start, human_feedback, HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
|
||||
class WebhookProvider(HumanFeedbackProvider):
|
||||
"""웹훅 콜백을 기다리며 Flow를 일시 중지하는 Provider."""
|
||||
|
||||
def __init__(self, webhook_url: str):
|
||||
self.webhook_url = webhook_url
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# 외부 시스템에 알림 (예: Slack 메시지 전송, 티켓 생성)
|
||||
self.send_notification(context)
|
||||
|
||||
# 실행 일시 중지 - 프레임워크가 자동으로 영속성 처리
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={"webhook_url": f"{self.webhook_url}/{context.flow_id}"}
|
||||
)
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="이 콘텐츠를 검토해 주세요:",
|
||||
emit=["approved", "rejected"],
|
||||
llm="gpt-4o-mini",
|
||||
provider=WebhookProvider("https://myapp.com/api"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "AI가 생성한 콘텐츠..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
return "출판됨!"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Flow 프레임워크는 `HumanFeedbackPending`이 발생하면 **자동으로 상태를 영속화**합니다. Provider는 외부 시스템에 알리고 예외를 발생시키기만 하면 됩니다—수동 영속성 호출이 필요하지 않습니다.
|
||||
</Tip>
|
||||
|
||||
### 일시 중지된 Flow 처리
|
||||
|
||||
비동기 provider를 사용하면 `kickoff()`는 예외를 발생시키는 대신 `HumanFeedbackPending` 객체를 반환합니다:
|
||||
|
||||
```python Code
|
||||
flow = ReviewFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
# Flow가 일시 중지됨, 상태가 자동으로 영속화됨
|
||||
print(f"피드백 대기 중: {result.callback_info['webhook_url']}")
|
||||
print(f"Flow ID: {result.context.flow_id}")
|
||||
else:
|
||||
# 정상 완료
|
||||
print(f"Flow 완료: {result}")
|
||||
```
|
||||
|
||||
### 일시 중지된 Flow 재개
|
||||
|
||||
피드백이 도착하면 (예: 웹훅을 통해) Flow를 재개합니다:
|
||||
|
||||
```python Code
|
||||
# 동기 핸들러:
|
||||
def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = flow.resume(feedback)
|
||||
return result
|
||||
|
||||
# 비동기 핸들러 (FastAPI, aiohttp 등):
|
||||
async def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = await flow.resume_async(feedback)
|
||||
return result
|
||||
```
|
||||
|
||||
### 주요 타입
|
||||
|
||||
| 타입 | 설명 |
|
||||
|------|------|
|
||||
| `HumanFeedbackProvider` | 커스텀 피드백 provider를 위한 프로토콜 |
|
||||
| `PendingFeedbackContext` | 일시 중지된 Flow를 재개하는 데 필요한 모든 정보 포함 |
|
||||
| `HumanFeedbackPending` | Flow가 피드백을 위해 일시 중지되면 `kickoff()`에서 반환됨 |
|
||||
| `ConsoleProvider` | 기본 블로킹 콘솔 입력 provider |
|
||||
|
||||
### PendingFeedbackContext
|
||||
|
||||
컨텍스트는 재개에 필요한 모든 것을 포함합니다:
|
||||
|
||||
```python Code
|
||||
@dataclass
|
||||
class PendingFeedbackContext:
|
||||
flow_id: str # 이 Flow 실행의 고유 식별자
|
||||
flow_class: str # 정규화된 클래스 이름
|
||||
method_name: str # 피드백을 트리거한 메서드
|
||||
method_output: Any # 인간에게 표시된 출력
|
||||
message: str # 요청 메시지
|
||||
emit: list[str] | None # 라우팅을 위한 가능한 outcome
|
||||
default_outcome: str | None
|
||||
metadata: dict # 커스텀 메타데이터
|
||||
llm: str | None # outcome 매핑을 위한 LLM
|
||||
requested_at: datetime
|
||||
```
|
||||
|
||||
### 완전한 비동기 Flow 예제
|
||||
|
||||
```python Code
|
||||
from crewai.flow import (
|
||||
Flow, start, listen, human_feedback,
|
||||
HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
)
|
||||
|
||||
class SlackNotificationProvider(HumanFeedbackProvider):
|
||||
"""Slack 알림을 보내고 비동기 피드백을 위해 일시 중지하는 Provider."""
|
||||
|
||||
def __init__(self, channel: str):
|
||||
self.channel = channel
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# Slack 알림 전송 (직접 구현)
|
||||
slack_thread_id = self.post_to_slack(
|
||||
channel=self.channel,
|
||||
message=f"검토 필요:\n\n{context.method_output}\n\n{context.message}",
|
||||
)
|
||||
|
||||
# 실행 일시 중지 - 프레임워크가 자동으로 영속성 처리
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={
|
||||
"slack_channel": self.channel,
|
||||
"thread_id": slack_thread_id,
|
||||
}
|
||||
)
|
||||
|
||||
class ContentPipeline(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="이 콘텐츠의 출판을 승인하시겠습니까?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
provider=SlackNotificationProvider("#content-reviews"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "AI가 생성한 블로그 게시물 콘텐츠..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"출판 중! 검토자 의견: {result.feedback}")
|
||||
return {"status": "published"}
|
||||
|
||||
@listen("rejected")
|
||||
def archive(self, result):
|
||||
print(f"보관됨. 이유: {result.feedback}")
|
||||
return {"status": "archived"}
|
||||
|
||||
@listen("needs_revision")
|
||||
def queue_revision(self, result):
|
||||
print(f"수정 대기열에 추가됨: {result.feedback}")
|
||||
return {"status": "revision_needed"}
|
||||
|
||||
|
||||
# Flow 시작 (Slack 응답을 기다리며 일시 중지)
|
||||
def start_content_pipeline():
|
||||
flow = ContentPipeline()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
return {"status": "pending", "flow_id": result.context.flow_id}
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# Slack 웹훅이 실행될 때 재개 (동기 핸들러)
|
||||
def on_slack_feedback(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = flow.resume(slack_message)
|
||||
return result
|
||||
|
||||
|
||||
# 핸들러가 비동기인 경우 (FastAPI, aiohttp, Slack Bolt 비동기 등)
|
||||
async def on_slack_feedback_async(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = await flow.resume_async(slack_message)
|
||||
return result
|
||||
```
|
||||
|
||||
<Warning>
|
||||
비동기 웹 프레임워크(FastAPI, aiohttp, Slack Bolt 비동기 모드)를 사용하는 경우 `flow.resume()` 대신 `await flow.resume_async()`를 사용하세요. 실행 중인 이벤트 루프 내에서 `resume()`을 호출하면 `RuntimeError`가 발생합니다.
|
||||
</Warning>
|
||||
|
||||
### 비동기 피드백 모범 사례
|
||||
|
||||
1. **반환 타입 확인**: `kickoff()`는 일시 중지되면 `HumanFeedbackPending`을 반환합니다—try/except가 필요하지 않습니다
|
||||
2. **올바른 resume 메서드 사용**: 동기 코드에서는 `resume()`, 비동기 코드에서는 `await resume_async()` 사용
|
||||
3. **콜백 정보 저장**: `callback_info`를 사용하여 웹훅 URL, 티켓 ID 등을 저장
|
||||
4. **멱등성 구현**: 안전을 위해 resume 핸들러는 멱등해야 합니다
|
||||
5. **자동 영속성**: `HumanFeedbackPending`이 발생하면 상태가 자동으로 저장되며 기본적으로 `SQLiteFlowPersistence` 사용
|
||||
6. **커스텀 영속성**: 필요한 경우 `from_pending()`에 커스텀 영속성 인스턴스 전달
|
||||
|
||||
## 관련 문서
|
||||
|
||||
- [Flow 개요](/ko/concepts/flows) - CrewAI Flow에 대해 알아보기
|
||||
- [Flow 상태 관리](/ko/guides/flows/mastering-flow-state) - Flow에서 상태 관리하기
|
||||
- [Flow 영속성](/ko/concepts/flows#persistence) - Flow 상태 영속화
|
||||
- [@router를 사용한 라우팅](/ko/concepts/flows#router) - 조건부 라우팅에 대해 더 알아보기
|
||||
- [실행 시 인간 입력](/ko/learn/human-input-on-execution) - 태스크 수준 인간 입력
|
||||
@@ -16,16 +16,17 @@ Bem-vindo à referência da API do CrewAI AOP. Esta API permite que você intera
|
||||
Navegue até a página de detalhes do seu crew no painel do CrewAI AOP e copie seu Bearer Token na aba Status.
|
||||
</Step>
|
||||
|
||||
<Step title="Descubra os Inputs Necessários">
|
||||
Use o endpoint `GET /inputs` para ver quais parâmetros seu crew espera.
|
||||
</Step>
|
||||
<Step title="Descubra os Inputs Necessários">
|
||||
Use o endpoint `GET /inputs` para ver quais parâmetros seu crew espera.
|
||||
</Step>
|
||||
|
||||
<Step title="Inicie uma Execução de Crew">
|
||||
Chame `POST /kickoff` com seus inputs para iniciar a execução do crew e receber um `kickoff_id`.
|
||||
</Step>
|
||||
<Step title="Inicie uma Execução de Crew">
|
||||
Chame `POST /kickoff` com seus inputs para iniciar a execução do crew e
|
||||
receber um `kickoff_id`.
|
||||
</Step>
|
||||
|
||||
<Step title="Monitore o Progresso">
|
||||
Use `GET /status/{kickoff_id}` para checar o status da execução e recuperar os resultados.
|
||||
Use `GET /{kickoff_id}/status` para checar o status da execução e recuperar os resultados.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
@@ -40,13 +41,14 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
|
||||
|
||||
### Tipos de Token
|
||||
|
||||
| Tipo de Token | Escopo | Caso de Uso |
|
||||
|:--------------------|:------------------------|:---------------------------------------------------------|
|
||||
| **Bearer Token** | Acesso em nível de organização | Operações completas de crew, ideal para integração server-to-server |
|
||||
| **User Bearer Token** | Acesso com escopo de usuário | Permissões limitadas, adequado para operações específicas de usuário |
|
||||
| Tipo de Token | Escopo | Caso de Uso |
|
||||
| :-------------------- | :----------------------------- | :------------------------------------------------------------------- |
|
||||
| **Bearer Token** | Acesso em nível de organização | Operações completas de crew, ideal para integração server-to-server |
|
||||
| **User Bearer Token** | Acesso com escopo de usuário | Permissões limitadas, adequado para operações específicas de usuário |
|
||||
|
||||
<Tip>
|
||||
Você pode encontrar ambos os tipos de token na aba Status da página de detalhes do seu crew no painel do CrewAI AOP.
|
||||
Você pode encontrar ambos os tipos de token na aba Status da página de
|
||||
detalhes do seu crew no painel do CrewAI AOP.
|
||||
</Tip>
|
||||
|
||||
## URL Base
|
||||
@@ -63,29 +65,33 @@ Substitua `your-crew-name` pela URL real do seu crew no painel.
|
||||
|
||||
1. **Descoberta**: Chame `GET /inputs` para entender o que seu crew precisa
|
||||
2. **Execução**: Envie os inputs via `POST /kickoff` para iniciar o processamento
|
||||
3. **Monitoramento**: Faça polling em `GET /status/{kickoff_id}` até a conclusão
|
||||
3. **Monitoramento**: Faça polling em `GET /{kickoff_id}/status` até a conclusão
|
||||
4. **Resultados**: Extraia o output final da resposta concluída
|
||||
|
||||
## Tratamento de Erros
|
||||
|
||||
A API utiliza códigos de status HTTP padrão:
|
||||
|
||||
| Código | Significado |
|
||||
|--------|:--------------------------------------|
|
||||
| `200` | Sucesso |
|
||||
| `400` | Requisição Inválida - Formato de input inválido |
|
||||
| `401` | Não Autorizado - Bearer token inválido |
|
||||
| `404` | Não Encontrado - Recurso não existe |
|
||||
| Código | Significado |
|
||||
| ------ | :----------------------------------------------- |
|
||||
| `200` | Sucesso |
|
||||
| `400` | Requisição Inválida - Formato de input inválido |
|
||||
| `401` | Não Autorizado - Bearer token inválido |
|
||||
| `404` | Não Encontrado - Recurso não existe |
|
||||
| `422` | Erro de Validação - Inputs obrigatórios ausentes |
|
||||
| `500` | Erro no Servidor - Contate o suporte |
|
||||
| `500` | Erro no Servidor - Contate o suporte |
|
||||
|
||||
## Testes Interativos
|
||||
|
||||
<Info>
|
||||
**Por que não há botão "Enviar"?** Como cada usuário do CrewAI AOP possui sua própria URL de crew, utilizamos o **modo referência** em vez de um playground interativo para evitar confusão. Isso mostra exatamente como as requisições devem ser feitas, sem botões de envio não funcionais.
|
||||
**Por que não há botão "Enviar"?** Como cada usuário do CrewAI AOP possui sua
|
||||
própria URL de crew, utilizamos o **modo referência** em vez de um playground
|
||||
interativo para evitar confusão. Isso mostra exatamente como as requisições
|
||||
devem ser feitas, sem botões de envio não funcionais.
|
||||
</Info>
|
||||
|
||||
Cada página de endpoint mostra para você:
|
||||
|
||||
- ✅ **Formato exato da requisição** com todos os parâmetros
|
||||
- ✅ **Exemplos de resposta** para casos de sucesso e erro
|
||||
- ✅ **Exemplos de código** em várias linguagens (cURL, Python, JavaScript, etc.)
|
||||
@@ -103,6 +109,7 @@ Cada página de endpoint mostra para você:
|
||||
</CardGroup>
|
||||
|
||||
**Exemplo de fluxo:**
|
||||
|
||||
1. **Copie este exemplo cURL** de qualquer página de endpoint
|
||||
2. **Substitua `your-actual-crew-name.crewai.com`** pela URL real do seu crew
|
||||
3. **Substitua o Bearer token** pelo seu token real do painel
|
||||
@@ -111,10 +118,18 @@ Cada página de endpoint mostra para você:
|
||||
## Precisa de Ajuda?
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Suporte Enterprise" icon="headset" href="mailto:support@crewai.com">
|
||||
<Card
|
||||
title="Suporte Enterprise"
|
||||
icon="headset"
|
||||
href="mailto:support@crewai.com"
|
||||
>
|
||||
Obtenha ajuda com integração da API e resolução de problemas
|
||||
</Card>
|
||||
<Card title="Painel Enterprise" icon="chart-line" href="https://app.crewai.com">
|
||||
<Card
|
||||
title="Painel Enterprise"
|
||||
icon="chart-line"
|
||||
href="https://app.crewai.com"
|
||||
>
|
||||
Gerencie seus crews e visualize logs de execução
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
---
|
||||
title: "GET /status/{kickoff_id}"
|
||||
title: "GET /{kickoff_id}/status"
|
||||
description: "Obter o status da execução"
|
||||
openapi: "/enterprise-api.pt-BR.yaml GET /status/{kickoff_id}"
|
||||
openapi: "/enterprise-api.pt-BR.yaml GET /{kickoff_id}/status"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
|
||||
|
||||
@@ -307,6 +307,55 @@ Os métodos `third_method` e `fourth_method` escutam a saída do `second_method`
|
||||
|
||||
Ao executar esse Flow, a saída será diferente dependendo do valor booleano aleatório gerado pelo `start_method`.
|
||||
|
||||
### Human in the Loop (feedback humano)
|
||||
|
||||
O decorador `@human_feedback` permite fluxos de trabalho human-in-the-loop, pausando a execução do flow para coletar feedback de um humano. Isso é útil para portões de aprovação, revisão de qualidade e pontos de decisão que requerem julgamento humano.
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Você aprova este conteúdo?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def generate_content(self):
|
||||
return "Conteúdo para revisão..."
|
||||
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"Aprovado! Feedback: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def on_rejection(self, result: HumanFeedbackResult):
|
||||
print(f"Rejeitado. Motivo: {result.feedback}")
|
||||
```
|
||||
|
||||
Quando `emit` é especificado, o feedback livre do humano é interpretado por um LLM e mapeado para um dos outcomes especificados, que então dispara o decorador `@listen` correspondente.
|
||||
|
||||
Você também pode usar `@human_feedback` sem roteamento para simplesmente coletar feedback:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="Algum comentário sobre esta saída?")
|
||||
def my_method(self):
|
||||
return "Saída para revisão"
|
||||
|
||||
@listen(my_method)
|
||||
def next_step(self, result: HumanFeedbackResult):
|
||||
# Acesse o feedback via result.feedback
|
||||
# Acesse a saída original via result.output
|
||||
pass
|
||||
```
|
||||
|
||||
Acesse todo o feedback coletado durante um flow via `self.last_human_feedback` (mais recente) ou `self.human_feedback_history` (todo o feedback em uma lista).
|
||||
|
||||
Para um guia completo sobre feedback humano em flows, incluindo feedback assíncrono/não-bloqueante com providers customizados (Slack, webhooks, etc.), veja [Feedback Humano em Flows](/pt-BR/learn/human-feedback-in-flows).
|
||||
|
||||
## Adicionando Agentes aos Flows
|
||||
|
||||
Os agentes podem ser integrados facilmente aos seus flows, oferecendo uma alternativa leve às crews completas quando você precisar executar tarefas simples e focadas. Veja um exemplo de como utilizar um agente em um flow para realizar uma pesquisa de mercado:
|
||||
|
||||
@@ -62,13 +62,13 @@ Teste sua integração de trigger do Gmail localmente usando a CLI da CrewAI:
|
||||
crewai triggers list
|
||||
|
||||
# Simule um trigger do Gmail com payload realista
|
||||
crewai triggers run gmail/new_email
|
||||
crewai triggers run gmail/new_email_received
|
||||
```
|
||||
|
||||
O comando `crewai triggers run` executará sua crew com um payload completo do Gmail, permitindo que você teste sua lógica de parsing antes do deployment.
|
||||
|
||||
<Warning>
|
||||
Use `crewai triggers run gmail/new_email` (não `crewai run`) para simular execução de trigger durante o desenvolvimento. Após o deployment, sua crew receberá automaticamente o payload do trigger.
|
||||
Use `crewai triggers run gmail/new_email_received` (não `crewai run`) para simular execução de trigger durante o desenvolvimento. Após o deployment, sua crew receberá automaticamente o payload do trigger.
|
||||
</Warning>
|
||||
|
||||
## Monitoring Executions
|
||||
@@ -83,6 +83,6 @@ Track history and performance of triggered runs:
|
||||
|
||||
- Ensure Gmail is connected in Tools & Integrations
|
||||
- Verify the Gmail Trigger is enabled on the Triggers tab
|
||||
- Teste localmente com `crewai triggers run gmail/new_email` para ver a estrutura exata do payload
|
||||
- Teste localmente com `crewai triggers run gmail/new_email_received` para ver a estrutura exata do payload
|
||||
- Check the execution logs and confirm the payload is passed as `crewai_trigger_payload`
|
||||
- Lembre-se: use `crewai triggers run` (não `crewai run`) para simular execução de trigger
|
||||
|
||||
581
docs/pt-BR/learn/human-feedback-in-flows.mdx
Normal file
581
docs/pt-BR/learn/human-feedback-in-flows.mdx
Normal file
@@ -0,0 +1,581 @@
|
||||
---
|
||||
title: Feedback Humano em Flows
|
||||
description: Aprenda como integrar feedback humano diretamente nos seus CrewAI Flows usando o decorador @human_feedback
|
||||
icon: user-check
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
## Visão Geral
|
||||
|
||||
O decorador `@human_feedback` permite fluxos de trabalho human-in-the-loop (HITL) diretamente nos CrewAI Flows. Ele permite pausar a execução do flow, apresentar a saída para um humano revisar, coletar seu feedback e, opcionalmente, rotear para diferentes listeners com base no resultado do feedback.
|
||||
|
||||
Isso é particularmente valioso para:
|
||||
|
||||
- **Garantia de qualidade**: Revisar conteúdo gerado por IA antes de ser usado downstream
|
||||
- **Portões de decisão**: Deixar humanos tomarem decisões críticas em fluxos automatizados
|
||||
- **Fluxos de aprovação**: Implementar padrões de aprovar/rejeitar/revisar
|
||||
- **Refinamento interativo**: Coletar feedback para melhorar saídas iterativamente
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
A[Método do Flow] --> B[Saída Gerada]
|
||||
B --> C[Humano Revisa]
|
||||
C --> D{Feedback}
|
||||
D -->|emit especificado| E[LLM Mapeia para Outcome]
|
||||
D -->|sem emit| F[HumanFeedbackResult]
|
||||
E --> G["@listen('approved')"]
|
||||
E --> H["@listen('rejected')"]
|
||||
F --> I[Próximo Listener]
|
||||
```
|
||||
|
||||
## Início Rápido
|
||||
|
||||
Aqui está a maneira mais simples de adicionar feedback humano a um flow:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback
|
||||
|
||||
class SimpleReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(message="Por favor, revise este conteúdo:")
|
||||
def generate_content(self):
|
||||
return "Este é um conteúdo gerado por IA que precisa de revisão."
|
||||
|
||||
@listen(generate_content)
|
||||
def process_feedback(self, result):
|
||||
print(f"Conteúdo: {result.output}")
|
||||
print(f"Humano disse: {result.feedback}")
|
||||
|
||||
flow = SimpleReviewFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
Quando este flow é executado, ele irá:
|
||||
1. Executar `generate_content` e retornar a string
|
||||
2. Exibir a saída para o usuário com a mensagem de solicitação
|
||||
3. Aguardar o usuário digitar o feedback (ou pressionar Enter para pular)
|
||||
4. Passar um objeto `HumanFeedbackResult` para `process_feedback`
|
||||
|
||||
## O Decorador @human_feedback
|
||||
|
||||
### Parâmetros
|
||||
|
||||
| Parâmetro | Tipo | Obrigatório | Descrição |
|
||||
|-----------|------|-------------|-----------|
|
||||
| `message` | `str` | Sim | A mensagem mostrada ao humano junto com a saída do método |
|
||||
| `emit` | `Sequence[str]` | Não | Lista de possíveis outcomes. O feedback é mapeado para um destes, que dispara decoradores `@listen` |
|
||||
| `llm` | `str \| BaseLLM` | Quando `emit` especificado | LLM usado para interpretar o feedback e mapear para um outcome |
|
||||
| `default_outcome` | `str` | Não | Outcome a usar se nenhum feedback for fornecido. Deve estar em `emit` |
|
||||
| `metadata` | `dict` | Não | Dados adicionais para integrações enterprise |
|
||||
| `provider` | `HumanFeedbackProvider` | Não | Provider customizado para feedback assíncrono/não-bloqueante. Veja [Feedback Humano Assíncrono](#feedback-humano-assíncrono-não-bloqueante) |
|
||||
|
||||
### Uso Básico (Sem Roteamento)
|
||||
|
||||
Quando você não especifica `emit`, o decorador simplesmente coleta o feedback e passa um `HumanFeedbackResult` para o próximo listener:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(message="O que você acha desta análise?")
|
||||
def analyze_data(self):
|
||||
return "Resultados da análise: Receita aumentou 15%, custos diminuíram 8%"
|
||||
|
||||
@listen(analyze_data)
|
||||
def handle_feedback(self, result):
|
||||
# result é um HumanFeedbackResult
|
||||
print(f"Análise: {result.output}")
|
||||
print(f"Feedback: {result.feedback}")
|
||||
```
|
||||
|
||||
### Roteamento com emit
|
||||
|
||||
Quando você especifica `emit`, o decorador se torna um roteador. O feedback livre do humano é interpretado por um LLM e mapeado para um dos outcomes especificados:
|
||||
|
||||
```python Code
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Você aprova este conteúdo para publicação?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_content(self):
|
||||
return "Rascunho do post do blog aqui..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"Publicando! Usuário disse: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def discard(self, result):
|
||||
print(f"Descartando. Motivo: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise(self, result):
|
||||
print(f"Revisando baseado em: {result.feedback}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
O LLM usa saídas estruturadas (function calling) quando disponível para garantir que a resposta seja um dos seus outcomes especificados. Isso torna o roteamento confiável e previsível.
|
||||
</Tip>
|
||||
|
||||
## HumanFeedbackResult
|
||||
|
||||
O dataclass `HumanFeedbackResult` contém todas as informações sobre uma interação de feedback humano:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
|
||||
@dataclass
|
||||
class HumanFeedbackResult:
|
||||
output: Any # A saída original do método mostrada ao humano
|
||||
feedback: str # O texto bruto do feedback do humano
|
||||
outcome: str | None # O outcome mapeado (se emit foi especificado)
|
||||
timestamp: datetime # Quando o feedback foi recebido
|
||||
method_name: str # Nome do método decorado
|
||||
metadata: dict # Qualquer metadata passado ao decorador
|
||||
```
|
||||
|
||||
### Acessando em Listeners
|
||||
|
||||
Quando um listener é disparado por um método `@human_feedback` com `emit`, ele recebe o `HumanFeedbackResult`:
|
||||
|
||||
```python Code
|
||||
@listen("approved")
|
||||
def on_approval(self, result: HumanFeedbackResult):
|
||||
print(f"Saída original: {result.output}")
|
||||
print(f"Feedback do usuário: {result.feedback}")
|
||||
print(f"Outcome: {result.outcome}") # "approved"
|
||||
print(f"Recebido em: {result.timestamp}")
|
||||
```
|
||||
|
||||
## Acessando o Histórico de Feedback
|
||||
|
||||
A classe `Flow` fornece dois atributos para acessar o feedback humano:
|
||||
|
||||
### last_human_feedback
|
||||
|
||||
Retorna o `HumanFeedbackResult` mais recente:
|
||||
|
||||
```python Code
|
||||
@listen(some_method)
|
||||
def check_feedback(self):
|
||||
if self.last_human_feedback:
|
||||
print(f"Último feedback: {self.last_human_feedback.feedback}")
|
||||
```
|
||||
|
||||
### human_feedback_history
|
||||
|
||||
Uma lista de todos os objetos `HumanFeedbackResult` coletados durante o flow:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def summarize(self):
|
||||
print(f"Total de feedbacks coletados: {len(self.human_feedback_history)}")
|
||||
for i, fb in enumerate(self.human_feedback_history):
|
||||
print(f"{i+1}. {fb.method_name}: {fb.outcome or 'sem roteamento'}")
|
||||
```
|
||||
|
||||
<Warning>
|
||||
Cada `HumanFeedbackResult` é adicionado a `human_feedback_history`, então múltiplos passos de feedback não sobrescrevem uns aos outros. Use esta lista para acessar todo o feedback coletado durante o flow.
|
||||
</Warning>
|
||||
|
||||
## Exemplo Completo: Fluxo de Aprovação de Conteúdo
|
||||
|
||||
Aqui está um exemplo completo implementando um fluxo de revisão e aprovação de conteúdo:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ContentState(BaseModel):
|
||||
topic: str = ""
|
||||
draft: str = ""
|
||||
final_content: str = ""
|
||||
revision_count: int = 0
|
||||
|
||||
|
||||
class ContentApprovalFlow(Flow[ContentState]):
|
||||
"""Um flow que gera conteúdo e obtém aprovação humana."""
|
||||
|
||||
@start()
|
||||
def get_topic(self):
|
||||
self.state.topic = input("Sobre qual tópico devo escrever? ")
|
||||
return self.state.topic
|
||||
|
||||
@listen(get_topic)
|
||||
def generate_draft(self, topic):
|
||||
# Em uso real, isso chamaria um LLM
|
||||
self.state.draft = f"# {topic}\n\nEste é um rascunho sobre {topic}..."
|
||||
return self.state.draft
|
||||
|
||||
@listen(generate_draft)
|
||||
@human_feedback(
|
||||
message="Por favor, revise este rascunho. Responda 'approved', 'rejected', ou forneça feedback de revisão:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
)
|
||||
def review_draft(self, draft):
|
||||
return draft
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
self.state.final_content = result.output
|
||||
print("\n✅ Conteúdo aprovado e publicado!")
|
||||
print(f"Comentário do revisor: {result.feedback}")
|
||||
return "published"
|
||||
|
||||
@listen("rejected")
|
||||
def handle_rejection(self, result: HumanFeedbackResult):
|
||||
print("\n❌ Conteúdo rejeitado")
|
||||
print(f"Motivo: {result.feedback}")
|
||||
return "rejected"
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
self.state.revision_count += 1
|
||||
print(f"\n📝 Revisão #{self.state.revision_count} solicitada")
|
||||
print(f"Feedback: {result.feedback}")
|
||||
|
||||
# Em um flow real, você pode voltar para generate_draft
|
||||
# Para este exemplo, apenas reconhecemos
|
||||
return "revision_requested"
|
||||
|
||||
|
||||
# Executar o flow
|
||||
flow = ContentApprovalFlow()
|
||||
result = flow.kickoff()
|
||||
print(f"\nFlow concluído. Revisões solicitadas: {flow.state.revision_count}")
|
||||
```
|
||||
|
||||
```text Output
|
||||
Sobre qual tópico devo escrever? Segurança em IA
|
||||
|
||||
==================================================
|
||||
OUTPUT FOR REVIEW:
|
||||
==================================================
|
||||
# Segurança em IA
|
||||
|
||||
Este é um rascunho sobre Segurança em IA...
|
||||
==================================================
|
||||
|
||||
Por favor, revise este rascunho. Responda 'approved', 'rejected', ou forneça feedback de revisão:
|
||||
(Press Enter to skip, or type your feedback)
|
||||
|
||||
Your feedback: Parece bom, aprovado!
|
||||
|
||||
✅ Conteúdo aprovado e publicado!
|
||||
Comentário do revisor: Parece bom, aprovado!
|
||||
|
||||
Flow concluído. Revisões solicitadas: 0
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Combinando com Outros Decoradores
|
||||
|
||||
O decorador `@human_feedback` funciona com outros decoradores de flow. Coloque-o como o decorador mais interno (mais próximo da função):
|
||||
|
||||
```python Code
|
||||
# Correto: @human_feedback é o mais interno (mais próximo da função)
|
||||
@start()
|
||||
@human_feedback(message="Revise isto:")
|
||||
def my_start_method(self):
|
||||
return "content"
|
||||
|
||||
@listen(other_method)
|
||||
@human_feedback(message="Revise isto também:")
|
||||
def my_listener(self, data):
|
||||
return f"processed: {data}"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Coloque `@human_feedback` como o decorador mais interno (último/mais próximo da função) para que ele envolva o método diretamente e possa capturar o valor de retorno antes de passar para o sistema de flow.
|
||||
</Tip>
|
||||
|
||||
## Melhores Práticas
|
||||
|
||||
### 1. Escreva Mensagens de Solicitação Claras
|
||||
|
||||
O parâmetro `message` é o que o humano vê. Torne-o acionável:
|
||||
|
||||
```python Code
|
||||
# ✅ Bom - claro e acionável
|
||||
@human_feedback(message="Este resumo captura com precisão os pontos-chave? Responda 'sim' ou explique o que está faltando:")
|
||||
|
||||
# ❌ Ruim - vago
|
||||
@human_feedback(message="Revise isto:")
|
||||
```
|
||||
|
||||
### 2. Escolha Outcomes Significativos
|
||||
|
||||
Ao usar `emit`, escolha outcomes que mapeiem naturalmente para respostas humanas:
|
||||
|
||||
```python Code
|
||||
# ✅ Bom - outcomes em linguagem natural
|
||||
emit=["approved", "rejected", "needs_more_detail"]
|
||||
|
||||
# ❌ Ruim - técnico ou pouco claro
|
||||
emit=["state_1", "state_2", "state_3"]
|
||||
```
|
||||
|
||||
### 3. Sempre Forneça um Outcome Padrão
|
||||
|
||||
Use `default_outcome` para lidar com casos onde usuários pressionam Enter sem digitar:
|
||||
|
||||
```python Code
|
||||
@human_feedback(
|
||||
message="Aprovar? (pressione Enter para solicitar revisão)",
|
||||
emit=["approved", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision", # Padrão seguro
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Use o Histórico de Feedback para Trilhas de Auditoria
|
||||
|
||||
Acesse `human_feedback_history` para criar logs de auditoria:
|
||||
|
||||
```python Code
|
||||
@listen(final_step)
|
||||
def create_audit_log(self):
|
||||
log = []
|
||||
for fb in self.human_feedback_history:
|
||||
log.append({
|
||||
"step": fb.method_name,
|
||||
"outcome": fb.outcome,
|
||||
"feedback": fb.feedback,
|
||||
"timestamp": fb.timestamp.isoformat(),
|
||||
})
|
||||
return log
|
||||
```
|
||||
|
||||
### 5. Trate Feedback Roteado e Não Roteado
|
||||
|
||||
Ao projetar flows, considere se você precisa de roteamento:
|
||||
|
||||
| Cenário | Use |
|
||||
|---------|-----|
|
||||
| Revisão simples, só precisa do texto do feedback | Sem `emit` |
|
||||
| Precisa ramificar para caminhos diferentes baseado na resposta | Use `emit` |
|
||||
| Portões de aprovação com aprovar/rejeitar/revisar | Use `emit` |
|
||||
| Coletando comentários apenas para logging | Sem `emit` |
|
||||
|
||||
## Feedback Humano Assíncrono (Não-Bloqueante - Human in the loop)
|
||||
|
||||
Por padrão, `@human_feedback` bloqueia a execução aguardando entrada no console. Para aplicações de produção, você pode precisar de feedback **assíncrono/não-bloqueante** que se integre com sistemas externos como Slack, email, webhooks ou APIs.
|
||||
|
||||
### A Abstração de Provider
|
||||
|
||||
Use o parâmetro `provider` para especificar uma estratégia customizada de coleta de feedback:
|
||||
|
||||
```python Code
|
||||
from crewai.flow import Flow, start, human_feedback, HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
|
||||
class WebhookProvider(HumanFeedbackProvider):
|
||||
"""Provider que pausa o flow e aguarda callback de webhook."""
|
||||
|
||||
def __init__(self, webhook_url: str):
|
||||
self.webhook_url = webhook_url
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# Notifica sistema externo (ex: envia mensagem Slack, cria ticket)
|
||||
self.send_notification(context)
|
||||
|
||||
# Pausa execução - framework cuida da persistência automaticamente
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={"webhook_url": f"{self.webhook_url}/{context.flow_id}"}
|
||||
)
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Revise este conteúdo:",
|
||||
emit=["approved", "rejected"],
|
||||
llm="gpt-4o-mini",
|
||||
provider=WebhookProvider("https://myapp.com/api"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "Conteúdo gerado por IA..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
return "Publicado!"
|
||||
```
|
||||
|
||||
<Tip>
|
||||
O framework de flow **persiste automaticamente o estado** quando `HumanFeedbackPending` é lançado. Seu provider só precisa notificar o sistema externo e lançar a exceção—não são necessárias chamadas manuais de persistência.
|
||||
</Tip>
|
||||
|
||||
### Tratando Flows Pausados
|
||||
|
||||
Ao usar um provider assíncrono, `kickoff()` retorna um objeto `HumanFeedbackPending` em vez de lançar uma exceção:
|
||||
|
||||
```python Code
|
||||
flow = ReviewFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
# Flow está pausado, estado é automaticamente persistido
|
||||
print(f"Aguardando feedback em: {result.callback_info['webhook_url']}")
|
||||
print(f"Flow ID: {result.context.flow_id}")
|
||||
else:
|
||||
# Conclusão normal
|
||||
print(f"Flow concluído: {result}")
|
||||
```
|
||||
|
||||
### Retomando um Flow Pausado
|
||||
|
||||
Quando o feedback chega (ex: via webhook), retome o flow:
|
||||
|
||||
```python Code
|
||||
# Handler síncrono:
|
||||
def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = flow.resume(feedback)
|
||||
return result
|
||||
|
||||
# Handler assíncrono (FastAPI, aiohttp, etc.):
|
||||
async def handle_feedback_webhook(flow_id: str, feedback: str):
|
||||
flow = ReviewFlow.from_pending(flow_id)
|
||||
result = await flow.resume_async(feedback)
|
||||
return result
|
||||
```
|
||||
|
||||
### Tipos Principais
|
||||
|
||||
| Tipo | Descrição |
|
||||
|------|-----------|
|
||||
| `HumanFeedbackProvider` | Protocolo para providers de feedback customizados |
|
||||
| `PendingFeedbackContext` | Contém todas as informações necessárias para retomar um flow pausado |
|
||||
| `HumanFeedbackPending` | Retornado por `kickoff()` quando o flow está pausado para feedback |
|
||||
| `ConsoleProvider` | Provider padrão de entrada bloqueante no console |
|
||||
|
||||
### PendingFeedbackContext
|
||||
|
||||
O contexto contém tudo necessário para retomar:
|
||||
|
||||
```python Code
|
||||
@dataclass
|
||||
class PendingFeedbackContext:
|
||||
flow_id: str # Identificador único desta execução de flow
|
||||
flow_class: str # Nome qualificado completo da classe
|
||||
method_name: str # Método que disparou o feedback
|
||||
method_output: Any # Saída mostrada ao humano
|
||||
message: str # A mensagem de solicitação
|
||||
emit: list[str] | None # Outcomes possíveis para roteamento
|
||||
default_outcome: str | None
|
||||
metadata: dict # Metadata customizado
|
||||
llm: str | None # LLM para mapeamento de outcome
|
||||
requested_at: datetime
|
||||
```
|
||||
|
||||
### Exemplo Completo de Flow Assíncrono
|
||||
|
||||
```python Code
|
||||
from crewai.flow import (
|
||||
Flow, start, listen, human_feedback,
|
||||
HumanFeedbackProvider, HumanFeedbackPending, PendingFeedbackContext
|
||||
)
|
||||
|
||||
class SlackNotificationProvider(HumanFeedbackProvider):
|
||||
"""Provider que envia notificações Slack e pausa para feedback assíncrono."""
|
||||
|
||||
def __init__(self, channel: str):
|
||||
self.channel = channel
|
||||
|
||||
def request_feedback(self, context: PendingFeedbackContext, flow: Flow) -> str:
|
||||
# Envia notificação Slack (implemente você mesmo)
|
||||
slack_thread_id = self.post_to_slack(
|
||||
channel=self.channel,
|
||||
message=f"Revisão necessária:\n\n{context.method_output}\n\n{context.message}",
|
||||
)
|
||||
|
||||
# Pausa execução - framework cuida da persistência automaticamente
|
||||
raise HumanFeedbackPending(
|
||||
context=context,
|
||||
callback_info={
|
||||
"slack_channel": self.channel,
|
||||
"thread_id": slack_thread_id,
|
||||
}
|
||||
)
|
||||
|
||||
class ContentPipeline(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
message="Aprova este conteúdo para publicação?",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
llm="gpt-4o-mini",
|
||||
default_outcome="needs_revision",
|
||||
provider=SlackNotificationProvider("#content-reviews"),
|
||||
)
|
||||
def generate_content(self):
|
||||
return "Conteúdo de blog post gerado por IA..."
|
||||
|
||||
@listen("approved")
|
||||
def publish(self, result):
|
||||
print(f"Publicando! Revisor disse: {result.feedback}")
|
||||
return {"status": "published"}
|
||||
|
||||
@listen("rejected")
|
||||
def archive(self, result):
|
||||
print(f"Arquivado. Motivo: {result.feedback}")
|
||||
return {"status": "archived"}
|
||||
|
||||
@listen("needs_revision")
|
||||
def queue_revision(self, result):
|
||||
print(f"Na fila para revisão: {result.feedback}")
|
||||
return {"status": "revision_needed"}
|
||||
|
||||
|
||||
# Iniciando o flow (vai pausar e aguardar resposta do Slack)
|
||||
def start_content_pipeline():
|
||||
flow = ContentPipeline()
|
||||
result = flow.kickoff()
|
||||
|
||||
if isinstance(result, HumanFeedbackPending):
|
||||
return {"status": "pending", "flow_id": result.context.flow_id}
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# Retomando quando webhook do Slack dispara (handler síncrono)
|
||||
def on_slack_feedback(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = flow.resume(slack_message)
|
||||
return result
|
||||
|
||||
|
||||
# Se seu handler é assíncrono (FastAPI, aiohttp, Slack Bolt async, etc.)
|
||||
async def on_slack_feedback_async(flow_id: str, slack_message: str):
|
||||
flow = ContentPipeline.from_pending(flow_id)
|
||||
result = await flow.resume_async(slack_message)
|
||||
return result
|
||||
```
|
||||
|
||||
<Warning>
|
||||
Se você está usando um framework web assíncrono (FastAPI, aiohttp, Slack Bolt modo async), use `await flow.resume_async()` em vez de `flow.resume()`. Chamar `resume()` de dentro de um event loop em execução vai lançar um `RuntimeError`.
|
||||
</Warning>
|
||||
|
||||
### Melhores Práticas para Feedback Assíncrono
|
||||
|
||||
1. **Verifique o tipo de retorno**: `kickoff()` retorna `HumanFeedbackPending` quando pausado—não precisa de try/except
|
||||
2. **Use o método resume correto**: Use `resume()` em código síncrono, `await resume_async()` em código assíncrono
|
||||
3. **Armazene informações de callback**: Use `callback_info` para armazenar URLs de webhook, IDs de tickets, etc.
|
||||
4. **Implemente idempotência**: Seu handler de resume deve ser idempotente por segurança
|
||||
5. **Persistência automática**: O estado é automaticamente salvo quando `HumanFeedbackPending` é lançado e usa `SQLiteFlowPersistence` por padrão
|
||||
6. **Persistência customizada**: Passe uma instância de persistência customizada para `from_pending()` se necessário
|
||||
|
||||
## Documentação Relacionada
|
||||
|
||||
- [Visão Geral de Flows](/pt-BR/concepts/flows) - Aprenda sobre CrewAI Flows
|
||||
- [Gerenciamento de Estado em Flows](/pt-BR/guides/flows/mastering-flow-state) - Gerenciando estado em flows
|
||||
- [Persistência de Flows](/pt-BR/concepts/flows#persistence) - Persistindo estado de flows
|
||||
- [Roteamento com @router](/pt-BR/concepts/flows#router) - Mais sobre roteamento condicional
|
||||
- [Input Humano na Execução](/pt-BR/learn/human-input-on-execution) - Input humano no nível de task
|
||||
Reference in New Issue
Block a user