Feature/kickoff consistent output (#847)

* Cleaned up task execution to now have separate paths for async and sync execution. Updating all kickoff functions to return CrewOutput. WIP. Waiting for Joao feedback on async task execution with task_output

* Consistently storing async and sync output for context

* outline tests I need to create going forward

* Major rehaul of TaskOutput and CrewOutput. Updated all tests to work with new change. Need to add in a few final tricky async tests and add a few more to verify output types on TaskOutput and CrewOutput.

* Encountering issues with callback. Need to test on main. WIP

* working on tests. WIP

* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable

* Fixing missing function. Working on tests.

* WIP. Needing team to review change

* Fixing issues brought about by merge

* WIP

* Implement major fixes from yesterdays group conversation. Now working on tests.

* The majority of tasks are working now. Need to fix converter class

* Fix final failing test

* Fix linting and type-checker issues

* Add more tests to fully test CrewOutput and TaskOutput changes

* Add in validation for async cannot depend on other async tasks.

* Update validators and tests
This commit is contained in:
Brandon Hancock (bhancock_ai)
2024-07-10 23:35:02 -04:00
committed by GitHub
parent 691b094a40
commit 7b53457ef3
30 changed files with 260509 additions and 697 deletions

View File

@@ -1,9 +1,11 @@
import json
import os
import re
import threading
import uuid
from concurrent.futures import Future, ThreadPoolExecutor
from concurrent.futures import Future
from copy import copy
from typing import Any, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
@@ -11,6 +13,7 @@ from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities.converter import Converter, ConverterError
@@ -106,7 +109,7 @@ class Task(BaseModel):
_execution_span: Span | None = None
_original_description: str | None = None
_original_expected_output: str | None = None
_future: Future | None = None
_thread: threading.Thread | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -161,80 +164,74 @@ class Task(BaseModel):
)
return self
def wait_for_completion(self) -> str | BaseModel:
"""Wait for asynchronous task completion and return the output."""
assert self.async_execution, "Task is not set to be executed asynchronously."
def execute_sync(
self,
agent: Optional[BaseAgent] = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> TaskOutput:
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
if self._future:
self._future.result() # Wait for the future to complete
self._future = None
assert self.output, "Task output is not set."
return self.output.exported_output
def execute(
def execute_async(
self,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str | None:
"""Execute the task.
) -> Future[TaskOutput]:
"""Execute the task asynchronously."""
future: Future[TaskOutput] = Future()
threading.Thread(
target=self._execute_task_async, args=(agent, context, tools, future)
).start()
return future
Returns:
Output of the task.
"""
def _execute_task_async(
self,
agent: Optional[BaseAgent],
context: Optional[str],
tools: Optional[List[Any]],
future: Future[TaskOutput],
) -> None:
"""Execute the task asynchronously with context handling."""
result = self._execute_core(agent, context, tools)
future.set_result(result)
def _execute_core(
self,
agent: Optional[BaseAgent],
context: Optional[str],
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
agent = agent or self.agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly "
"and should be executed in a Crew using a specific process that support that, like hierarchical."
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
if self.context:
internal_context = []
for task in self.context:
if task.async_execution:
task.wait_for_completion()
if task.output:
internal_context.append(task.output.raw_output)
context = "\n".join(internal_context)
self.prompt_context = context
tools = tools or self.tools
tools = tools or self.tools or []
if self.async_execution:
with ThreadPoolExecutor() as executor:
self._future = executor.submit(
self._execute, agent, self, context, tools
)
return None
else:
result = self._execute(
task=self,
agent=agent,
context=context,
tools=tools,
)
return result
def _execute(self, agent: "BaseAgent", task, context, tools) -> str | None:
result = agent.execute_task(
task=task,
task=self,
context=context,
tools=tools,
)
exported_output = self._export_output(result)
self.output = TaskOutput(
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
description=self.description,
exported_output=exported_output,
raw_output=result,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
self.output = task_output
if self.callback:
self.callback(self.output)
@@ -243,7 +240,15 @@ class Task(BaseModel):
self._telemetry.task_ended(self._execution_span, self)
self._execution_span = None
return exported_output
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)
return task_output
def prompt(self) -> str:
"""Prompt the task.
@@ -278,7 +283,7 @@ class Task(BaseModel):
"""Increment the delegations counter."""
self.delegations += 1
def copy(self, agents: Optional[List["BaseAgent"]] = None) -> "Task": # type: ignore # Signature of "copy" incompatible with supertype "BaseModel"
def copy(self, agents: List["BaseAgent"]) -> "Task":
"""Create a deep copy of the Task."""
exclude = {
"id",
@@ -295,7 +300,7 @@ class Task(BaseModel):
)
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
return next((agent for agent in agents if agent.role == role), None) # type: ignore # Item "None" of "list[BaseAgent] | None" has no attribute "__iter__" (not iterable)
return next((agent for agent in agents if agent.role == role), None)
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
cloned_tools = copy(self.tools) if self.tools else []
@@ -309,72 +314,113 @@ class Task(BaseModel):
return copied_task
def _create_converter(self, *args, **kwargs) -> Converter: # type: ignore
converter = self.agent.get_output_converter( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
*args, **kwargs
)
def _create_converter(self, *args, **kwargs) -> Converter:
"""Create a converter instance."""
converter = self.agent.get_output_converter(*args, **kwargs)
if self.converter_cls:
converter = self.converter_cls( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
*args, **kwargs
)
converter = self.converter_cls(*args, **kwargs)
return converter
def _export_output(self, result: str) -> Any:
exported_result = result
instructions = "I'm gonna convert this raw text into valid JSON."
def _export_output(
self, result: str
) -> Tuple[Optional[BaseModel], Optional[Dict[str, Any]]]:
pydantic_output: Optional[BaseModel] = None
json_output: Optional[Dict[str, Any]] = None
if self.output_pydantic or self.output_json:
model = self.output_pydantic or self.output_json
model_output = self._convert_to_model(result)
pydantic_output = (
model_output if isinstance(model_output, BaseModel) else None
)
if isinstance(model_output, str):
try:
json_output = json.loads(model_output)
except json.JSONDecodeError:
json_output = None
else:
json_output = model_output if isinstance(model_output, dict) else None
# try to convert task_output directly to pydantic/json
return pydantic_output, json_output
def _convert_to_model(self, result: str) -> Union[dict, BaseModel, str]:
model = self.output_pydantic or self.output_json
if model is None:
return result
try:
return self._validate_model(result, model)
except Exception:
return self._handle_partial_json(result, model)
def _validate_model(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel]:
exported_result = model.model_validate_json(result)
if self.output_json:
return exported_result.model_dump()
return exported_result
def _handle_partial_json(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(result) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
exported_result = model.model_validate_json(match.group(0))
if self.output_json:
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result.model_dump()
return exported_result
except Exception:
# sometimes the response contains valid JSON in the middle of text
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0)) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
if self.output_json:
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result
except Exception:
pass
pass
llm = getattr(self.agent, "function_calling_llm", None) or self.agent.llm # type: ignore # Item "None" of "BaseAgent | None" has no attribute "function_calling_llm"
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema() # type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return self._convert_with_instructions(result, model)
converter = self._create_converter( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
llm=llm, text=result, model=model, instructions=instructions
def _convert_with_instructions(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
llm = self.agent.function_calling_llm or self.agent.llm
instructions = self._get_conversion_instructions(model, llm)
converter = self._create_converter(
llm=llm, text=result, model=model, instructions=instructions
)
exported_result = (
converter.to_pydantic() if self.output_pydantic else converter.to_json()
)
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
if self.output_pydantic:
exported_result = converter.to_pydantic()
elif self.output_json:
exported_result = converter.to_json()
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
exported_result = result
if self.output_file:
content = (
exported_result
if not self.output_pydantic
else exported_result.model_dump_json() # type: ignore # "str" has no attribute "json"
)
self._save_file(content)
return result
return exported_result
def _get_output_format(self) -> OutputFormat:
if self.output_json:
return OutputFormat.JSON
if self.output_pydantic:
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _get_conversion_instructions(self, model: Type[BaseModel], llm: Any) -> str:
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return instructions
def _save_output(self, content: str) -> None:
if not self.output_file:
raise Exception("Output file path is not set.")
directory = os.path.dirname(self.output_file)
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w", encoding="utf-8") as file:
file.write(content)
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None