feat: implement knowledge retrieval events in Agent (#2727)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled

* feat: implement knowledge retrieval events in Agent

This commit introduces a series of knowledge retrieval events in the Agent class, enhancing its ability to handle knowledge queries. New events include KnowledgeRetrievalStartedEvent, KnowledgeRetrievalCompletedEvent, KnowledgeQueryGeneratedEvent, KnowledgeQueryFailedEvent, and KnowledgeSearchQueryCompletedEvent. The Agent now emits these events during knowledge retrieval processes, allowing for better tracking and handling of knowledge queries. Additionally, the console formatter has been updated to handle these new events, providing visual feedback during knowledge retrieval operations.

* refactor: update knowledge query handling in Agent

This commit refines the knowledge query processing in the Agent class by renaming variables for clarity and optimizing the query rewriting logic. The system prompt has been updated in the translation file to enhance clarity and context for the query rewriting process. These changes aim to improve the overall readability and maintainability of the code.

* fix: add missing newline at end of en.json file

* fix broken tests

* refactor: rename knowledge query events and enhance retrieval handling

This commit renames the KnowledgeQueryGeneratedEvent to KnowledgeQueryStartedEvent to better reflect its purpose. It also updates the event handling in the EventListener and ConsoleFormatter classes to accommodate the new event structure. Additionally, the retrieval knowledge is now included in the KnowledgeRetrievalCompletedEvent, improving the overall knowledge retrieval process.

* docs for transparancy

* refactor: improve error handling in knowledge query processing

This commit refactors the knowledge query handling in the Agent class by changing the order of checks for LLM compatibility. It now logs a warning and emits a failure event if the LLM is not an instance of BaseLLM before attempting to call the LLM. Additionally, the task_prompt attribute has been removed from the KnowledgeQueryFailedEvent, simplifying the event structure.

* test: add unit test for knowledge search query and VCR cassette

This commit introduces a new test, `test_get_knowledge_search_query`, to verify that the `_get_knowledge_search_query` method in the Agent class correctly interacts with the LLM using the appropriate prompts. Additionally, a VCR cassette is added to record the interactions with the OpenAI API for this test, ensuring consistent and reliable test results.
This commit is contained in:
Lorenze Jay
2025-05-07 11:55:42 -07:00
committed by GitHub
parent e3887ae36e
commit 7ad51d9d05
13 changed files with 2776 additions and 465 deletions

View File

@@ -9,7 +9,6 @@ import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
from crewai.agents.parser import CrewAgentParser, OutputParserException
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.knowledge_config import KnowledgeConfig
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
@@ -73,6 +72,7 @@ def test_agent_creation():
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
def test_agent_with_only_system_template():
"""Test that an agent with only system_template works without errors."""
agent = Agent(
@@ -88,6 +88,7 @@ def test_agent_with_only_system_template():
assert agent.goal == "Test Goal"
assert agent.backstory == "Test Backstory"
def test_agent_with_only_prompt_template():
"""Test that an agent with only system_template works without errors."""
agent = Agent(
@@ -119,7 +120,8 @@ def test_agent_with_missing_response_template():
assert agent.role == "Test Role"
assert agent.goal == "Test Goal"
assert agent.backstory == "Test Backstory"
def test_agent_default_values():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert agent.llm.model == "gpt-4o-mini"
@@ -1630,13 +1632,10 @@ def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
with patch("crewai.knowledge") as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
mock_knowledge_instance.search.return_value = [{"content": content}]
agent = Agent(
role="Information Agent",
@@ -1690,7 +1689,7 @@ def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold():
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
["Brandon's favorite color"],
**knowledge_config.model_dump(),
)
@@ -1727,7 +1726,7 @@ def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_defau
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
["Brandon's favorite color"],
**knowledge_config.model_dump(),
)
@@ -1737,9 +1736,7 @@ def test_agent_with_knowledge_sources_extensive_role():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
with patch("crewai.knowledge") as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
@@ -1803,6 +1800,40 @@ def test_agent_with_knowledge_sources_works_with_copy():
assert isinstance(agent_copy.llm, LLM)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_generate_search_query():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch("crewai.knowledge") as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
agent = Agent(
role="Information Agent with extensive role description that is longer than 80 characters",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="The answer to the question, in a format like this: `{{name: str, favorite_color: str}}`",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Updated assertion to check the JSON content
assert "Brandon" in str(agent.knowledge_search_query)
assert "favorite color" in str(agent.knowledge_search_query)
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_litellm_auth_error_handling():
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
@@ -1940,3 +1971,57 @@ def test_litellm_anthropic_error_handling():
# Verify the LLM call was only made once (no retries)
mock_llm_call.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_get_knowledge_search_query():
"""Test that _get_knowledge_search_query calls the LLM with the correct prompts."""
from crewai.utilities.i18n import I18N
content = "The capital of France is Paris."
string_source = StringKnowledgeSource(content=content)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="I have access to knowledge sources",
llm=LLM(model="gpt-4"),
knowledge_sources=[string_source],
)
task = Task(
description="What is the capital of France?",
expected_output="The capital of France is Paris.",
agent=agent,
)
i18n = I18N()
task_prompt = task.prompt()
with patch.object(agent, "_get_knowledge_search_query") as mock_get_query:
mock_get_query.return_value = "Capital of France"
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
mock_get_query.assert_called_once_with(task_prompt)
with patch.object(agent.llm, "call") as mock_llm_call:
agent._get_knowledge_search_query(task_prompt)
mock_llm_call.assert_called_once_with(
[
{
"role": "system",
"content": i18n.slice(
"knowledge_search_query_system_prompt"
).format(task_prompt=task.description),
},
{
"role": "user",
"content": i18n.slice("knowledge_search_query").format(
task_prompt=task_prompt
),
},
]
)