Address code review feedback: improve model detection, parameter filtering, and test coverage

- Refactor _is_ollama_model to use constants for better maintainability
- Make parameter filtering more explicit with clear comments
- Add type hints for better code clarity
- Add comprehensive edge case tests for model detection
- Improve test docstrings with detailed descriptions
- Move integration test to proper tests/ directory structure
- Fix lint error in test script by adding assertion
- All tests passing locally with improved code quality

Co-Authored-By: João <joao@crewai.com>
This commit is contained in:
Devin AI
2025-06-28 21:40:38 +00:00
parent aa82ca5273
commit 7a19bfb4a9
4 changed files with 170 additions and 15 deletions

View File

@@ -1691,7 +1691,17 @@ def test_agent_execute_task_with_ollama():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ollama_model_with_response_format():
"""Test that Ollama models work correctly when response_format is provided."""
"""
Test Ollama model compatibility with response_format parameter.
Verifies:
- LLM initialization with response_format doesn't raise ValueError
- Agent creation with formatted LLM succeeds
- Successful execution without raising ValueError for unsupported response_format
Note: This test may fail in CI due to Ollama server not being available,
but the core functionality (no ValueError on initialization) should work.
"""
from pydantic import BaseModel
class TestOutput(BaseModel):
@@ -1719,7 +1729,14 @@ def test_ollama_model_with_response_format():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ollama_model_response_format_filtered_in_params():
"""Test that response_format is filtered out for Ollama models in _prepare_completion_params."""
"""
Test that response_format is filtered out for Ollama models in _prepare_completion_params.
Verifies:
- Ollama model detection works correctly for various model formats
- response_format parameter is excluded from completion params for Ollama models
- Model detection returns correct boolean values for different model types
"""
from pydantic import BaseModel
class TestOutput(BaseModel):
@@ -1739,7 +1756,14 @@ def test_ollama_model_response_format_filtered_in_params():
def test_non_ollama_model_keeps_response_format():
"""Test that non-Ollama models still include response_format in params."""
"""
Test that non-Ollama models still include response_format in params.
Verifies:
- Non-Ollama models are correctly identified as such
- response_format parameter is preserved for non-Ollama models
- Backward compatibility is maintained for existing LLM providers
"""
from pydantic import BaseModel
class TestOutput(BaseModel):
@@ -1756,6 +1780,35 @@ def test_non_ollama_model_keeps_response_format():
assert params.get("response_format") == TestOutput
def test_ollama_model_detection_edge_cases():
"""
Test edge cases for Ollama model detection.
Verifies:
- Various Ollama model naming patterns are correctly identified
- Case-insensitive detection works properly
- Non-Ollama models containing 'ollama' in name are not misidentified
- Different provider prefixes are handled correctly
"""
from crewai.llm import LLM
test_cases = [
("ollama/llama3.2:3b", True, "Standard ollama/ prefix"),
("OLLAMA/MODEL:TAG", True, "Uppercase ollama/ prefix"),
("ollama:custom-model", True, "ollama: prefix"),
("custom/ollama-model", False, "Contains 'ollama' but not prefix"),
("gpt-4", False, "Non-Ollama model"),
("anthropic/claude-3", False, "Different provider"),
("openai/gpt-4", False, "OpenAI model"),
("ollama/gemma3:latest", True, "Ollama with version tag"),
]
for model_name, expected, description in test_cases:
llm = LLM(model=model_name)
result = llm._is_ollama_model(model_name)
assert result == expected, f"Failed for {description}: {model_name} -> {result} (expected {expected})"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
content = "Brandon's favorite color is red and he likes Mexican food."