mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-21 13:58:15 +00:00
Merge branch 'main' into brandon/improve-llm-structured-output
This commit is contained in:
@@ -279,9 +279,9 @@ print(result)
|
||||
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
|
||||
|
||||
- `kickoff()`: Starts the execution process according to the defined process flow.
|
||||
- `kickoff_for_each()`: Executes tasks for each agent individually.
|
||||
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
|
||||
- `kickoff_async()`: Initiates the workflow asynchronously.
|
||||
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
|
||||
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
|
||||
|
||||
```python Code
|
||||
# Start the crew's task execution
|
||||
|
||||
@@ -185,7 +185,7 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
|
||||
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model="text-embedding-3-small"),
|
||||
)
|
||||
```
|
||||
|
||||
@@ -224,7 +224,7 @@ my_crew = Crew(
|
||||
"provider": "google",
|
||||
"config": {
|
||||
"api_key": "<YOUR_API_KEY>",
|
||||
"model_name": "<model_name>"
|
||||
"model": "<model_name>"
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -247,7 +247,7 @@ my_crew = Crew(
|
||||
api_base="YOUR_API_BASE_PATH",
|
||||
api_type="azure",
|
||||
api_version="YOUR_API_VERSION",
|
||||
model_name="text-embedding-3-small"
|
||||
model="text-embedding-3-small"
|
||||
)
|
||||
)
|
||||
```
|
||||
@@ -268,7 +268,7 @@ my_crew = Crew(
|
||||
project_id="YOUR_PROJECT_ID",
|
||||
region="YOUR_REGION",
|
||||
api_key="YOUR_API_KEY",
|
||||
model_name="textembedding-gecko"
|
||||
model="textembedding-gecko"
|
||||
)
|
||||
)
|
||||
```
|
||||
@@ -288,7 +288,7 @@ my_crew = Crew(
|
||||
"provider": "cohere",
|
||||
"config": {
|
||||
"api_key": "YOUR_API_KEY",
|
||||
"model_name": "<model_name>"
|
||||
"model": "<model_name>"
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -308,7 +308,7 @@ my_crew = Crew(
|
||||
"provider": "voyageai",
|
||||
"config": {
|
||||
"api_key": "YOUR_API_KEY",
|
||||
"model_name": "<model_name>"
|
||||
"model": "<model_name>"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
@@ -81,8 +81,8 @@ my_crew.kickoff()
|
||||
|
||||
3. **Collect Data:**
|
||||
|
||||
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
|
||||
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
|
||||
- Search for the latest papers, articles, and reports published in 2024 and early 2025.
|
||||
- Use keywords like "Large Language Models 2025", "AI LLM advancements", "AI ethics 2025", etc.
|
||||
|
||||
4. **Analyze Findings:**
|
||||
|
||||
|
||||
@@ -69,7 +69,7 @@ research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
the current year is 2025.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
@@ -155,7 +155,7 @@ research_task = Task(
|
||||
description="""
|
||||
Conduct a thorough research about AI Agents.
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
the current year is 2025.
|
||||
""",
|
||||
expected_output="""
|
||||
A list with 10 bullet points of the most relevant information about AI Agents
|
||||
|
||||
Reference in New Issue
Block a user