mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-14 18:48:29 +00:00
initial knowledge
This commit is contained in:
@@ -8,6 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.knowledge import StringKnowledgeBase
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
@@ -51,6 +52,7 @@ class Agent(BaseAgent):
|
||||
role: The role of the agent.
|
||||
goal: The objective of the agent.
|
||||
backstory: The backstory of the agent.
|
||||
knowledge: The knowledge base of the agent.
|
||||
config: Dict representation of agent configuration.
|
||||
llm: The language model that will run the agent.
|
||||
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
|
||||
@@ -84,6 +86,10 @@ class Agent(BaseAgent):
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
knowledge: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Knowledge base for the agent.",
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
@@ -182,6 +188,8 @@ class Agent(BaseAgent):
|
||||
if self.allow_code_execution:
|
||||
self._validate_docker_installation()
|
||||
|
||||
self.knowledge = StringKnowledgeBase(content=self.knowledge)
|
||||
|
||||
return self
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
|
||||
0
src/crewai/knowledge/__init__.py
Normal file
0
src/crewai/knowledge/__init__.py
Normal file
115
src/crewai/knowledge/base_knowledge.py
Normal file
115
src/crewai/knowledge/base_knowledge.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from typing import List, Any, Optional, Dict
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
from .embeddings import Embeddings
|
||||
|
||||
|
||||
class BaseKnowledgeBase(ABC):
|
||||
"""Abstract base class for knowledge bases"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int = 1000,
|
||||
chunk_overlap: int = 200,
|
||||
embeddings_class: Optional[Embeddings] = None,
|
||||
):
|
||||
self.chunk_size = chunk_size
|
||||
self.chunk_overlap = chunk_overlap
|
||||
self.chunks: List[str] = []
|
||||
self.chunk_embeddings: Dict[int, np.ndarray] = {}
|
||||
self.embeddings_class = embeddings_class or Embeddings()
|
||||
|
||||
@abstractmethod
|
||||
def query(self, query: str) -> str:
|
||||
"""Query the knowledge base and return relevant information"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def add(self, content: Any) -> None:
|
||||
"""Process and store content in the knowledge base"""
|
||||
pass
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset the knowledge base"""
|
||||
self.chunks = []
|
||||
self.chunk_embeddings = {}
|
||||
|
||||
def _embed_chunks(self, new_chunks: List[str]) -> None:
|
||||
"""Embed chunks and store them"""
|
||||
if not new_chunks:
|
||||
return
|
||||
|
||||
# Get embeddings for new chunks
|
||||
embeddings = self.embeddings_class.embed_texts(new_chunks)
|
||||
|
||||
# Store embeddings with their corresponding chunks
|
||||
start_idx = len(self.chunks)
|
||||
for i, embedding in enumerate(embeddings):
|
||||
self.chunk_embeddings[start_idx + i] = embedding
|
||||
|
||||
def _chunk_text(self, text: str) -> List[str]:
|
||||
"""Split text into chunks with overlap"""
|
||||
chunks = []
|
||||
start = 0
|
||||
text_length = len(text)
|
||||
|
||||
while start < text_length:
|
||||
# Get the chunk of size chunk_size
|
||||
end = start + self.chunk_size
|
||||
|
||||
if end >= text_length:
|
||||
# If we're at the end, just take the rest
|
||||
chunks.append(text[start:].strip())
|
||||
break
|
||||
|
||||
# Look for a good breaking point
|
||||
# Priority: double newline > single newline > period > space
|
||||
break_chars = ["\n\n", "\n", ". ", " "]
|
||||
chunk_end = end
|
||||
|
||||
for break_char in break_chars:
|
||||
# Look for the break_char in a window around the end point
|
||||
window_start = max(start + self.chunk_size - 100, start)
|
||||
window_end = min(start + self.chunk_size + 100, text_length)
|
||||
window_text = text[window_start:window_end]
|
||||
|
||||
# Find the last occurrence of the break_char in the window
|
||||
last_break = window_text.rfind(break_char)
|
||||
if last_break != -1:
|
||||
chunk_end = window_start + last_break + len(break_char)
|
||||
break
|
||||
|
||||
# Add the chunk
|
||||
chunk = text[start:chunk_end].strip()
|
||||
if chunk: # Only add non-empty chunks
|
||||
chunks.append(chunk)
|
||||
|
||||
# Move the start pointer, accounting for overlap
|
||||
start = max(
|
||||
start + self.chunk_size - self.chunk_overlap,
|
||||
chunk_end - self.chunk_overlap,
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
||||
def _find_similar_chunks(self, query: str, top_k: int = 3) -> List[str]:
|
||||
"""Find the most similar chunks to a query using embeddings"""
|
||||
if not self.chunks:
|
||||
return []
|
||||
|
||||
# Get query embedding
|
||||
query_embedding = self.embeddings_class.embed_text(query)
|
||||
|
||||
# Calculate similarities with all chunks
|
||||
similarities = []
|
||||
for idx, chunk_embedding in self.chunk_embeddings.items():
|
||||
similarity = np.dot(query_embedding, chunk_embedding)
|
||||
similarities.append((similarity, idx))
|
||||
|
||||
# Sort by similarity and get top_k chunks
|
||||
similarities.sort(reverse=True)
|
||||
top_chunks = []
|
||||
for _, idx in similarities[:top_k]:
|
||||
top_chunks.append(self.chunks[idx])
|
||||
|
||||
return top_chunks
|
||||
78
src/crewai/knowledge/embeddings.py
Normal file
78
src/crewai/knowledge/embeddings.py
Normal file
@@ -0,0 +1,78 @@
|
||||
from typing import List, Optional, Union
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
from fastembed_gpu import TextEmbedding
|
||||
|
||||
FASTEMBED_AVAILABLE = True
|
||||
except ImportError:
|
||||
try:
|
||||
from fastembed import TextEmbedding
|
||||
|
||||
FASTEMBED_AVAILABLE = True
|
||||
except ImportError:
|
||||
FASTEMBED_AVAILABLE = False
|
||||
|
||||
|
||||
class Embeddings:
|
||||
"""
|
||||
A wrapper class for text embedding models using FastEmbed
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "BAAI/bge-small-en-v1.5",
|
||||
cache_dir: Optional[Union[str, Path]] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the embedding model
|
||||
|
||||
Args:
|
||||
model_name: Name of the model to use
|
||||
cache_dir: Directory to cache the model
|
||||
gpu: Whether to use GPU acceleration
|
||||
"""
|
||||
if not FASTEMBED_AVAILABLE:
|
||||
raise ImportError(
|
||||
"FastEmbed is not installed. Please install it with: "
|
||||
"pip install fastembed or pip install fastembed-gpu for GPU support"
|
||||
)
|
||||
|
||||
self.model = TextEmbedding(
|
||||
model_name=model_name,
|
||||
cache_dir=str(cache_dir) if cache_dir else None,
|
||||
)
|
||||
|
||||
def embed_texts(self, texts: List[str]) -> np.ndarray:
|
||||
"""
|
||||
Generate embeddings for a list of texts
|
||||
|
||||
Args:
|
||||
texts: List of texts to embed
|
||||
|
||||
Returns:
|
||||
Array of embeddings
|
||||
"""
|
||||
# FastEmbed returns a generator, convert to list then numpy array
|
||||
embeddings = list(self.model.embed(texts))
|
||||
return np.array(embeddings)
|
||||
|
||||
def embed_text(self, text: str) -> np.ndarray:
|
||||
"""
|
||||
Generate embedding for a single text
|
||||
|
||||
Args:
|
||||
text: Text to embed
|
||||
|
||||
Returns:
|
||||
Embedding array
|
||||
"""
|
||||
return self.embed_texts([text])[0]
|
||||
|
||||
@property
|
||||
def dimension(self) -> int:
|
||||
"""Get the dimension of the embeddings"""
|
||||
# Generate a test embedding to get dimensions
|
||||
test_embed = self.embed_text("test")
|
||||
return len(test_embed)
|
||||
40
src/crewai/knowledge/string_knowledge.py
Normal file
40
src/crewai/knowledge/string_knowledge.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from typing import Optional
|
||||
from crewai.knowledge.base_knowledge import BaseKnowledgeBase
|
||||
from crewai.knowledge.embeddings import Embeddings
|
||||
|
||||
|
||||
class StringKnowledgeBase(BaseKnowledgeBase):
|
||||
"""A knowledge base that stores and queries plain text content using embeddings"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int = 1000,
|
||||
chunk_overlap: int = 200,
|
||||
embeddings_class: Optional[Embeddings] = None,
|
||||
content: Optional[str] = None,
|
||||
):
|
||||
super().__init__(chunk_size, chunk_overlap, embeddings_class)
|
||||
if content:
|
||||
self.add(content)
|
||||
|
||||
def add(self, content: str) -> None:
|
||||
"""Add text content to the knowledge base, chunk it, and compute embeddings"""
|
||||
if not isinstance(content, str):
|
||||
raise ValueError("StringKnowledgeBase only accepts string content")
|
||||
|
||||
# Create chunks from the text
|
||||
new_chunks = self._chunk_text(content)
|
||||
|
||||
# Add chunks to the knowledge base
|
||||
self.chunks.extend(new_chunks)
|
||||
|
||||
# Compute and store embeddings for the new chunks
|
||||
self._embed_chunks(new_chunks)
|
||||
|
||||
def query(self, query: str, top_k: int = 3) -> str:
|
||||
"""
|
||||
Query the knowledge base using semantic search
|
||||
Returns the most relevant chunk based on embedding similarity
|
||||
"""
|
||||
similar_chunks = self._find_similar_chunks(query, top_k=top_k)
|
||||
return similar_chunks[0] if similar_chunks else ""
|
||||
Reference in New Issue
Block a user