mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-15 02:58:30 +00:00
feat: merge main
This commit is contained in:
@@ -1183,7 +1183,7 @@ def test_agent_max_retry_limit():
|
||||
[
|
||||
mock.call(
|
||||
{
|
||||
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"input": "Say the word: Hi\n\nThis is the expected criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
"ask_for_human_input": True,
|
||||
@@ -1191,7 +1191,7 @@ def test_agent_max_retry_limit():
|
||||
),
|
||||
mock.call(
|
||||
{
|
||||
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"input": "Say the word: Hi\n\nThis is the expected criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
"ask_for_human_input": True,
|
||||
|
||||
100
tests/cassettes/test_deepseek_r1_with_open_router.yaml
Normal file
100
tests/cassettes/test_deepseek_r1_with_open_router.yaml
Normal file
@@ -0,0 +1,100 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"model": "deepseek/deepseek-r1", "messages": [{"role": "user", "content":
|
||||
"What is the capital of France?"}], "stop": [], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '139'
|
||||
host:
|
||||
- openrouter.ai
|
||||
http-referer:
|
||||
- https://litellm.ai
|
||||
user-agent:
|
||||
- litellm/1.60.2
|
||||
x-title:
|
||||
- liteLLM
|
||||
method: POST
|
||||
uri: https://openrouter.ai/api/v1/chat/completions
|
||||
response:
|
||||
content: "\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n\n
|
||||
\ \n\n \n\n \n\n \n\n \n\n \n{\"id\":\"gen-1738684300-YnD5WOSczQWsW0vQG78a\",\"provider\":\"Nebius\",\"model\":\"deepseek/deepseek-r1\",\"object\":\"chat.completion\",\"created\":1738684300,\"choices\":[{\"logprobs\":null,\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"The
|
||||
capital of France is **Paris**. Known for its iconic landmarks such as the Eiffel
|
||||
Tower, Notre-Dame Cathedral, and the Louvre Museum, Paris has served as the
|
||||
political and cultural center of France for centuries. \U0001F1EB\U0001F1F7\",\"refusal\":null}}],\"usage\":{\"prompt_tokens\":10,\"completion_tokens\":261,\"total_tokens\":271}}"
|
||||
headers:
|
||||
Access-Control-Allow-Origin:
|
||||
- '*'
|
||||
CF-RAY:
|
||||
- 90cbd2ceaf3ead5e-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Feb 2025 15:51:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
Vary:
|
||||
- Accept-Encoding
|
||||
x-clerk-auth-message:
|
||||
- Invalid JWT form. A JWT consists of three parts separated by dots. (reason=token-invalid,
|
||||
token-carrier=header)
|
||||
x-clerk-auth-reason:
|
||||
- token-invalid
|
||||
x-clerk-auth-status:
|
||||
- signed-out
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
107
tests/cassettes/test_o3_mini_reasoning_effort_high.yaml
Normal file
107
tests/cassettes/test_o3_mini_reasoning_effort_high.yaml
Normal file
@@ -0,0 +1,107 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o3-mini", "reasoning_effort": "high", "stop": []}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '137'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=etTqqA9SBOnENmrFAUBIexdW0v2ZeO1x9_Ek_WChlfU-1737568920137-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AxFNUz7l4pwtY9xhFSPIGlwNfE4Sj\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1738683828,\n \"model\": \"o3-mini-2025-01-31\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The capital of France is Paris.\",\n
|
||||
\ \"refusal\": null\n },\n \"finish_reason\": \"stop\"\n }\n
|
||||
\ ],\n \"usage\": {\n \"prompt_tokens\": 13,\n \"completion_tokens\":
|
||||
81,\n \"total_tokens\": 94,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 64,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_8bcaa0ca21\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 90cbc745d91fb0ca-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Feb 2025 15:43:50 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=.AP74BirsYr.lu61bSaimK2HRF6126qr5vCrr3HC6ak-1738683830-1.0.1.1-feh.bcMOv9wYnitoPpr.7UR7JrzCsbRLlzct09xCDm2SwmnRQQk5ZSSV41Ywer2S0rptbvufFwklV9wo9ATvWw;
|
||||
path=/; expires=Tue, 04-Feb-25 16:13:50 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=JBfx8Sl7w82A0S_K1tQd5ZcwzWaZP5Gg5W1dqAdgwNU-1738683830528-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2169'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_163e7bd79cb5a5e62d4688245b97d1d9
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
102
tests/cassettes/test_o3_mini_reasoning_effort_low.yaml
Normal file
102
tests/cassettes/test_o3_mini_reasoning_effort_low.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o3-mini", "reasoning_effort": "low", "stop": []}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '136'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=JBfx8Sl7w82A0S_K1tQd5ZcwzWaZP5Gg5W1dqAdgwNU-1738683830528-0.0.1.1-604800000;
|
||||
__cf_bm=.AP74BirsYr.lu61bSaimK2HRF6126qr5vCrr3HC6ak-1738683830-1.0.1.1-feh.bcMOv9wYnitoPpr.7UR7JrzCsbRLlzct09xCDm2SwmnRQQk5ZSSV41Ywer2S0rptbvufFwklV9wo9ATvWw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AxFNWljEYFrf5qRwYj73OPQtAnPbF\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1738683830,\n \"model\": \"o3-mini-2025-01-31\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The capital of France is Paris.\",\n
|
||||
\ \"refusal\": null\n },\n \"finish_reason\": \"stop\"\n }\n
|
||||
\ ],\n \"usage\": {\n \"prompt_tokens\": 13,\n \"completion_tokens\":
|
||||
17,\n \"total_tokens\": 30,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_8bcaa0ca21\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 90cbc7551fe0b0ca-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Feb 2025 15:43:51 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1103'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_fd7178a0e5060216d04f3bd023e8bca1
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
102
tests/cassettes/test_o3_mini_reasoning_effort_medium.yaml
Normal file
102
tests/cassettes/test_o3_mini_reasoning_effort_medium.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o3-mini", "reasoning_effort": "medium", "stop": []}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '139'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=JBfx8Sl7w82A0S_K1tQd5ZcwzWaZP5Gg5W1dqAdgwNU-1738683830528-0.0.1.1-604800000;
|
||||
__cf_bm=.AP74BirsYr.lu61bSaimK2HRF6126qr5vCrr3HC6ak-1738683830-1.0.1.1-feh.bcMOv9wYnitoPpr.7UR7JrzCsbRLlzct09xCDm2SwmnRQQk5ZSSV41Ywer2S0rptbvufFwklV9wo9ATvWw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AxFS8IuMeYs6Rky2UbG8wH8P5PR4k\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1738684116,\n \"model\": \"o3-mini-2025-01-31\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The capital of France is Paris.\",\n
|
||||
\ \"refusal\": null\n },\n \"finish_reason\": \"stop\"\n }\n
|
||||
\ ],\n \"usage\": {\n \"prompt_tokens\": 13,\n \"completion_tokens\":
|
||||
145,\n \"total_tokens\": 158,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 128,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_8bcaa0ca21\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 90cbce51b946afb4-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Feb 2025 15:48:39 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2365'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_bfd83679e674c3894991477f1fb043b2
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -55,72 +55,83 @@ def test_train_invalid_string_iterations(train_crew, runner):
|
||||
)
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.ShortTermMemory")
|
||||
@mock.patch("crewai.cli.reset_memories_command.EntityMemory")
|
||||
@mock.patch("crewai.cli.reset_memories_command.LongTermMemory")
|
||||
@mock.patch("crewai.cli.reset_memories_command.TaskOutputStorageHandler")
|
||||
def test_reset_all_memories(
|
||||
MockTaskOutputStorageHandler,
|
||||
MockLongTermMemory,
|
||||
MockEntityMemory,
|
||||
MockShortTermMemory,
|
||||
runner,
|
||||
):
|
||||
result = runner.invoke(reset_memories, ["--all"])
|
||||
MockShortTermMemory().reset.assert_called_once()
|
||||
MockEntityMemory().reset.assert_called_once()
|
||||
MockLongTermMemory().reset.assert_called_once()
|
||||
MockTaskOutputStorageHandler().reset.assert_called_once()
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_all_memories(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-a"])
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="all")
|
||||
assert result.output == "All memories have been reset.\n"
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.ShortTermMemory")
|
||||
def test_reset_short_term_memories(MockShortTermMemory, runner):
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_short_term_memories(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-s"])
|
||||
MockShortTermMemory().reset.assert_called_once()
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="short")
|
||||
assert result.output == "Short term memory has been reset.\n"
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.EntityMemory")
|
||||
def test_reset_entity_memories(MockEntityMemory, runner):
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_entity_memories(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-e"])
|
||||
MockEntityMemory().reset.assert_called_once()
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="entity")
|
||||
assert result.output == "Entity memory has been reset.\n"
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.LongTermMemory")
|
||||
def test_reset_long_term_memories(MockLongTermMemory, runner):
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_long_term_memories(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-l"])
|
||||
MockLongTermMemory().reset.assert_called_once()
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="long")
|
||||
assert result.output == "Long term memory has been reset.\n"
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.TaskOutputStorageHandler")
|
||||
def test_reset_kickoff_outputs(MockTaskOutputStorageHandler, runner):
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_kickoff_outputs(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-k"])
|
||||
MockTaskOutputStorageHandler().reset.assert_called_once()
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="kickoff_outputs")
|
||||
assert result.output == "Latest Kickoff outputs stored has been reset.\n"
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.ShortTermMemory")
|
||||
@mock.patch("crewai.cli.reset_memories_command.LongTermMemory")
|
||||
def test_reset_multiple_memory_flags(MockShortTermMemory, MockLongTermMemory, runner):
|
||||
result = runner.invoke(
|
||||
reset_memories,
|
||||
[
|
||||
"-s",
|
||||
"-l",
|
||||
],
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_multiple_memory_flags(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["-s", "-l"])
|
||||
|
||||
# Check that reset_memories was called twice with the correct arguments
|
||||
assert mock_crew.reset_memories.call_count == 2
|
||||
mock_crew.reset_memories.assert_has_calls(
|
||||
[mock.call(command_type="long"), mock.call(command_type="short")]
|
||||
)
|
||||
MockShortTermMemory().reset.assert_called_once()
|
||||
MockLongTermMemory().reset.assert_called_once()
|
||||
assert (
|
||||
result.output
|
||||
== "Long term memory has been reset.\nShort term memory has been reset.\n"
|
||||
)
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.reset_memories_command.get_crew")
|
||||
def test_reset_knowledge(mock_get_crew, runner):
|
||||
mock_crew = mock.Mock()
|
||||
mock_get_crew.return_value = mock_crew
|
||||
result = runner.invoke(reset_memories, ["--knowledge"])
|
||||
|
||||
mock_crew.reset_memories.assert_called_once_with(command_type="knowledge")
|
||||
assert result.output == "Knowledge has been reset.\n"
|
||||
|
||||
|
||||
def test_reset_no_memory_flags(runner):
|
||||
result = runner.invoke(
|
||||
reset_memories,
|
||||
|
||||
@@ -2,7 +2,7 @@ research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
the current year is 2025.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
@@ -49,6 +49,39 @@ writer = Agent(
|
||||
)
|
||||
|
||||
|
||||
def test_crew_with_only_conditional_tasks_raises_error():
|
||||
"""Test that creating a crew with only conditional tasks raises an error."""
|
||||
def condition_func(task_output: TaskOutput) -> bool:
|
||||
return True
|
||||
|
||||
conditional1 = ConditionalTask(
|
||||
description="Conditional task 1",
|
||||
expected_output="Output 1",
|
||||
agent=researcher,
|
||||
condition=condition_func,
|
||||
)
|
||||
conditional2 = ConditionalTask(
|
||||
description="Conditional task 2",
|
||||
expected_output="Output 2",
|
||||
agent=researcher,
|
||||
condition=condition_func,
|
||||
)
|
||||
conditional3 = ConditionalTask(
|
||||
description="Conditional task 3",
|
||||
expected_output="Output 3",
|
||||
agent=researcher,
|
||||
condition=condition_func,
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
pydantic_core._pydantic_core.ValidationError,
|
||||
match="Crew must include at least one non-conditional task",
|
||||
):
|
||||
Crew(
|
||||
agents=[researcher],
|
||||
tasks=[conditional1, conditional2, conditional3],
|
||||
)
|
||||
|
||||
def test_crew_config_conditional_requirement():
|
||||
with pytest.raises(ValueError):
|
||||
Crew(process=Process.sequential)
|
||||
@@ -1917,6 +1950,77 @@ def test_task_callback_on_crew():
|
||||
assert isinstance(args[0], TaskOutput)
|
||||
|
||||
|
||||
def test_task_callback_both_on_task_and_crew():
|
||||
from unittest.mock import MagicMock, patch
|
||||
mock_callback_on_task = MagicMock()
|
||||
mock_callback_on_crew = MagicMock()
|
||||
|
||||
researcher_agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Make the best research and analysis on content about AI and AI agents",
|
||||
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
list_ideas = Task(
|
||||
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
|
||||
expected_output="Bullet point list of 5 important events.",
|
||||
agent=researcher_agent,
|
||||
async_execution=True,
|
||||
callback=mock_callback_on_task,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher_agent],
|
||||
process=Process.sequential,
|
||||
tasks=[list_ideas],
|
||||
task_callback=mock_callback_on_crew,
|
||||
)
|
||||
|
||||
with patch.object(Agent, "execute_task") as execute:
|
||||
execute.return_value = "ok"
|
||||
crew.kickoff()
|
||||
|
||||
assert list_ideas.callback is not None
|
||||
mock_callback_on_task.assert_called_once_with(list_ideas.output)
|
||||
mock_callback_on_crew.assert_called_once_with(list_ideas.output)
|
||||
|
||||
|
||||
def test_task_same_callback_both_on_task_and_crew():
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
mock_callback = MagicMock()
|
||||
|
||||
researcher_agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Make the best research and analysis on content about AI and AI agents",
|
||||
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
list_ideas = Task(
|
||||
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
|
||||
expected_output="Bullet point list of 5 important events.",
|
||||
agent=researcher_agent,
|
||||
async_execution=True,
|
||||
callback=mock_callback,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher_agent],
|
||||
process=Process.sequential,
|
||||
tasks=[list_ideas],
|
||||
task_callback=mock_callback,
|
||||
)
|
||||
|
||||
with patch.object(Agent, "execute_task") as execute:
|
||||
execute.return_value = "ok"
|
||||
crew.kickoff()
|
||||
|
||||
assert list_ideas.callback is not None
|
||||
mock_callback.assert_called_once_with(list_ideas.output)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_tools_with_custom_caching():
|
||||
from unittest.mock import patch
|
||||
@@ -1989,6 +2093,195 @@ def test_tools_with_custom_caching():
|
||||
assert result.raw == "3"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_conditional_task_uses_last_output():
|
||||
"""Test that conditional tasks use the last task output for condition evaluation."""
|
||||
task1 = Task(
|
||||
description="First task",
|
||||
expected_output="First output",
|
||||
agent=researcher,
|
||||
)
|
||||
def condition_fails(task_output: TaskOutput) -> bool:
|
||||
# This condition will never be met
|
||||
return "never matches" in task_output.raw.lower()
|
||||
|
||||
def condition_succeeds(task_output: TaskOutput) -> bool:
|
||||
# This condition will match first task's output
|
||||
return "first success" in task_output.raw.lower()
|
||||
|
||||
conditional_task1 = ConditionalTask(
|
||||
description="Second task - conditional that fails condition",
|
||||
expected_output="Second output",
|
||||
agent=researcher,
|
||||
condition=condition_fails,
|
||||
)
|
||||
|
||||
conditional_task2 = ConditionalTask(
|
||||
description="Third task - conditional that succeeds using first task output",
|
||||
expected_output="Third output",
|
||||
agent=writer,
|
||||
condition=condition_succeeds,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, conditional_task1, conditional_task2],
|
||||
)
|
||||
|
||||
# Mock outputs for tasks
|
||||
mock_first = TaskOutput(
|
||||
description="First task output",
|
||||
raw="First success output", # Will be used by third task's condition
|
||||
agent=researcher.role,
|
||||
)
|
||||
mock_skipped = TaskOutput(
|
||||
description="Second task output",
|
||||
raw="", # Empty output since condition fails
|
||||
agent=researcher.role,
|
||||
)
|
||||
mock_third = TaskOutput(
|
||||
description="Third task output",
|
||||
raw="Third task executed", # Output when condition succeeds using first task output
|
||||
agent=writer.role,
|
||||
)
|
||||
|
||||
# Set up mocks for task execution and conditional logic
|
||||
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
|
||||
# First conditional fails, second succeeds
|
||||
mock_should_execute.side_effect = [False, True]
|
||||
|
||||
with patch.object(Task, "execute_sync") as mock_execute:
|
||||
mock_execute.side_effect = [mock_first, mock_third]
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify execution behavior
|
||||
assert mock_execute.call_count == 2 # Only first and third tasks execute
|
||||
assert mock_should_execute.call_count == 2 # Both conditionals checked
|
||||
|
||||
# Verify outputs collection
|
||||
assert len(result.tasks_output) == 3
|
||||
assert result.tasks_output[0].raw == "First success output" # First task succeeded
|
||||
assert result.tasks_output[1].raw == "" # Second task skipped (condition failed)
|
||||
assert result.tasks_output[2].raw == "Third task executed" # Third task used first task's output
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_conditional_tasks_result_collection():
|
||||
"""Test that task outputs are properly collected based on execution status."""
|
||||
task1 = Task(
|
||||
description="Normal task that always executes",
|
||||
expected_output="First output",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
def condition_never_met(task_output: TaskOutput) -> bool:
|
||||
return "never matches" in task_output.raw.lower()
|
||||
|
||||
def condition_always_met(task_output: TaskOutput) -> bool:
|
||||
return "success" in task_output.raw.lower()
|
||||
|
||||
task2 = ConditionalTask(
|
||||
description="Conditional task that never executes",
|
||||
expected_output="Second output",
|
||||
agent=researcher,
|
||||
condition=condition_never_met,
|
||||
)
|
||||
|
||||
task3 = ConditionalTask(
|
||||
description="Conditional task that always executes",
|
||||
expected_output="Third output",
|
||||
agent=writer,
|
||||
condition=condition_always_met,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2, task3],
|
||||
)
|
||||
|
||||
# Mock outputs for different execution paths
|
||||
mock_success = TaskOutput(
|
||||
description="Success output",
|
||||
raw="Success output", # Triggers third task's condition
|
||||
agent=researcher.role,
|
||||
)
|
||||
mock_skipped = TaskOutput(
|
||||
description="Skipped output",
|
||||
raw="", # Empty output for skipped task
|
||||
agent=researcher.role,
|
||||
)
|
||||
mock_conditional = TaskOutput(
|
||||
description="Conditional output",
|
||||
raw="Conditional task executed",
|
||||
agent=writer.role,
|
||||
)
|
||||
|
||||
# Set up mocks for task execution and conditional logic
|
||||
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
|
||||
# First conditional fails, second succeeds
|
||||
mock_should_execute.side_effect = [False, True]
|
||||
|
||||
with patch.object(Task, "execute_sync") as mock_execute:
|
||||
mock_execute.side_effect = [mock_success, mock_conditional]
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify execution behavior
|
||||
assert mock_execute.call_count == 2 # Only first and third tasks execute
|
||||
assert mock_should_execute.call_count == 2 # Both conditionals checked
|
||||
|
||||
# Verify task output collection
|
||||
assert len(result.tasks_output) == 3
|
||||
assert result.tasks_output[0].raw == "Success output" # Normal task executed
|
||||
assert result.tasks_output[1].raw == "" # Second task skipped
|
||||
assert result.tasks_output[2].raw == "Conditional task executed" # Third task executed
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_multiple_conditional_tasks():
|
||||
"""Test that having multiple conditional tasks in sequence works correctly."""
|
||||
task1 = Task(
|
||||
description="Initial research task",
|
||||
expected_output="Research output",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
def condition1(task_output: TaskOutput) -> bool:
|
||||
return "success" in task_output.raw.lower()
|
||||
|
||||
def condition2(task_output: TaskOutput) -> bool:
|
||||
return "proceed" in task_output.raw.lower()
|
||||
|
||||
task2 = ConditionalTask(
|
||||
description="First conditional task",
|
||||
expected_output="Conditional output 1",
|
||||
agent=writer,
|
||||
condition=condition1,
|
||||
)
|
||||
|
||||
task3 = ConditionalTask(
|
||||
description="Second conditional task",
|
||||
expected_output="Conditional output 2",
|
||||
agent=writer,
|
||||
condition=condition2,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2, task3],
|
||||
)
|
||||
|
||||
# Mock different task outputs to test conditional logic
|
||||
mock_success = TaskOutput(
|
||||
description="Mock success",
|
||||
raw="Success and proceed output",
|
||||
agent=researcher.role,
|
||||
)
|
||||
|
||||
# Set up mocks for task execution
|
||||
with patch.object(Task, "execute_sync", return_value=mock_success) as mock_execute:
|
||||
result = crew.kickoff()
|
||||
# Verify all tasks were executed (no IndexError)
|
||||
assert mock_execute.call_count == 3
|
||||
assert len(result.tasks_output) == 3
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_using_contextual_memory():
|
||||
from unittest.mock import patch
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
import os
|
||||
from time import sleep
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
@@ -202,3 +204,170 @@ def test_llm_passes_additional_params():
|
||||
|
||||
# Check the result from llm.call
|
||||
assert result == "Test response"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_openrouter():
|
||||
llm = LLM(model="openrouter/deepseek/deepseek-chat")
|
||||
assert llm._get_custom_llm_provider() == "openrouter"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_gemini():
|
||||
llm = LLM(model="gemini/gemini-1.5-pro")
|
||||
assert llm._get_custom_llm_provider() == "gemini"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_openai():
|
||||
llm = LLM(model="gpt-4")
|
||||
assert llm._get_custom_llm_provider() == "openai"
|
||||
|
||||
|
||||
def test_validate_call_params_supported():
|
||||
class DummyResponse(BaseModel):
|
||||
a: int
|
||||
|
||||
# Patch supports_response_schema to simulate a supported model.
|
||||
with patch("crewai.llm.supports_response_schema", return_value=True):
|
||||
llm = LLM(
|
||||
model="openrouter/deepseek/deepseek-chat", response_format=DummyResponse
|
||||
)
|
||||
# Should not raise any error.
|
||||
llm._validate_call_params()
|
||||
|
||||
|
||||
def test_validate_call_params_not_supported():
|
||||
class DummyResponse(BaseModel):
|
||||
a: int
|
||||
|
||||
# Patch supports_response_schema to simulate an unsupported model.
|
||||
with patch("crewai.llm.supports_response_schema", return_value=False):
|
||||
llm = LLM(model="gemini/gemini-1.5-pro", response_format=DummyResponse)
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
llm._validate_call_params()
|
||||
assert "does not support response_format" in str(excinfo.value)
|
||||
|
||||
|
||||
def test_validate_call_params_no_response_format():
|
||||
# When no response_format is provided, no validation error should occur.
|
||||
llm = LLM(model="gemini/gemini-1.5-pro", response_format=None)
|
||||
llm._validate_call_params()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_o3_mini_reasoning_effort_high():
|
||||
llm = LLM(
|
||||
model="o3-mini",
|
||||
reasoning_effort="high",
|
||||
)
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_o3_mini_reasoning_effort_low():
|
||||
llm = LLM(
|
||||
model="o3-mini",
|
||||
reasoning_effort="low",
|
||||
)
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_o3_mini_reasoning_effort_medium():
|
||||
llm = LLM(
|
||||
model="o3-mini",
|
||||
reasoning_effort="medium",
|
||||
)
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.fixture
|
||||
def anthropic_llm():
|
||||
"""Fixture providing an Anthropic LLM instance."""
|
||||
return LLM(model="anthropic/claude-3-sonnet")
|
||||
|
||||
@pytest.fixture
|
||||
def system_message():
|
||||
"""Fixture providing a system message."""
|
||||
return {"role": "system", "content": "test"}
|
||||
|
||||
@pytest.fixture
|
||||
def user_message():
|
||||
"""Fixture providing a user message."""
|
||||
return {"role": "user", "content": "test"}
|
||||
|
||||
def test_anthropic_message_formatting_edge_cases(anthropic_llm):
|
||||
"""Test edge cases for Anthropic message formatting."""
|
||||
# Test None messages
|
||||
with pytest.raises(TypeError, match="Messages cannot be None"):
|
||||
anthropic_llm._format_messages_for_provider(None)
|
||||
|
||||
# Test empty message list
|
||||
formatted = anthropic_llm._format_messages_for_provider([])
|
||||
assert len(formatted) == 1
|
||||
assert formatted[0]["role"] == "user"
|
||||
assert formatted[0]["content"] == "."
|
||||
|
||||
# Test invalid message format
|
||||
with pytest.raises(TypeError, match="Invalid message format"):
|
||||
anthropic_llm._format_messages_for_provider([{"invalid": "message"}])
|
||||
|
||||
def test_anthropic_model_detection():
|
||||
"""Test Anthropic model detection with various formats."""
|
||||
models = [
|
||||
("anthropic/claude-3", True),
|
||||
("claude-instant", True),
|
||||
("claude/v1", True),
|
||||
("gpt-4", False),
|
||||
("", False),
|
||||
("anthropomorphic", False), # Should not match partial words
|
||||
]
|
||||
|
||||
for model, expected in models:
|
||||
llm = LLM(model=model)
|
||||
assert llm.is_anthropic == expected, f"Failed for model: {model}"
|
||||
|
||||
def test_anthropic_message_formatting(anthropic_llm, system_message, user_message):
|
||||
"""Test Anthropic message formatting with fixtures."""
|
||||
# Test when first message is system
|
||||
formatted = anthropic_llm._format_messages_for_provider([system_message])
|
||||
assert len(formatted) == 2
|
||||
assert formatted[0]["role"] == "user"
|
||||
assert formatted[0]["content"] == "."
|
||||
assert formatted[1] == system_message
|
||||
|
||||
# Test when first message is already user
|
||||
formatted = anthropic_llm._format_messages_for_provider([user_message])
|
||||
assert len(formatted) == 1
|
||||
assert formatted[0] == user_message
|
||||
|
||||
# Test with empty message list
|
||||
formatted = anthropic_llm._format_messages_for_provider([])
|
||||
assert len(formatted) == 1
|
||||
assert formatted[0]["role"] == "user"
|
||||
assert formatted[0]["content"] == "."
|
||||
|
||||
# Test with non-Anthropic model (should not modify messages)
|
||||
non_anthropic_llm = LLM(model="gpt-4")
|
||||
formatted = non_anthropic_llm._format_messages_for_provider([system_message])
|
||||
assert len(formatted) == 1
|
||||
assert formatted[0] == system_message
|
||||
|
||||
|
||||
def test_deepseek_r1_with_open_router():
|
||||
if not os.getenv("OPEN_ROUTER_API_KEY"):
|
||||
pytest.skip("OPEN_ROUTER_API_KEY not set; skipping test.")
|
||||
|
||||
llm = LLM(
|
||||
model="openrouter/deepseek/deepseek-r1",
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
api_key=os.getenv("OPEN_ROUTER_API_KEY"),
|
||||
)
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
@@ -723,14 +723,14 @@ def test_interpolate_inputs():
|
||||
)
|
||||
|
||||
task.interpolate_inputs_and_add_conversation_history(
|
||||
inputs={"topic": "AI", "date": "2024"}
|
||||
inputs={"topic": "AI", "date": "2025"}
|
||||
)
|
||||
assert (
|
||||
task.description
|
||||
== "Give me a list of 5 interesting ideas about AI to explore for an article, what makes them unique and interesting."
|
||||
)
|
||||
assert task.expected_output == "Bullet point list of 5 interesting ideas about AI."
|
||||
assert task.output_file == "/tmp/AI/output_2024.txt"
|
||||
assert task.output_file == "/tmp/AI/output_2025.txt"
|
||||
|
||||
task.interpolate_inputs_and_add_conversation_history(
|
||||
inputs={"topic": "ML", "date": "2025"}
|
||||
|
||||
Reference in New Issue
Block a user