Trying to fix linting and other warnings (#1417)

* Trying to fix linting

* fixing more type issues

* clean up ci

* more ci fixes

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
This commit is contained in:
Brandon Hancock (bhancock_ai)
2024-10-11 09:45:53 -04:00
committed by GitHub
parent b149bd4149
commit 6534a909d6
5 changed files with 63 additions and 78 deletions

View File

@@ -3,7 +3,13 @@ import re
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import CrewAgentParser
from crewai.agents.parser import (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
AgentAction,
AgentFinish,
CrewAgentParser,
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
@@ -13,12 +19,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
)
from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.agents.parser import (
AgentAction,
AgentFinish,
OutputParserException,
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
)
class CrewAgentExecutor(CrewAgentExecutorMixin):
@@ -307,34 +307,24 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.agent.id)
if (
CrewTrainingHandler(TRAINING_DATA_FILE).load()
and not self.ask_for_human_input
):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if training_data.get(agent_id):
training_data[agent_id][self.crew._train_iteration][
"improved_output"
] = result.output
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
if self.ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": result.output,
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.agent.role,
}
# Load training data
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load()
# Check if training data exists, human input is not requested, and self.crew is valid
if training_data and not self.ask_for_human_input:
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if isinstance(train_iteration, int):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
train_iteration, agent_id, training_data
)
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._logger.log(
"error",
"Invalid train iteration type. Expected int.",
"Invalid train iteration type or agent_id not in training data.",
color="red",
)
else: