mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-25 08:08:14 +00:00
fix: address flaky tests (#3363)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
fix: resolve flaky tests and race conditions in test suite - Fix telemetry/event tests by patching class methods instead of instances - Use unique temp files/directories to prevent CI race conditions - Reset singleton state between tests - Mock embedchain.Client.setup() to prevent JSON corruption - Rename test files to test_*.py convention - Move agent tests to tests/agents directory - Fix repeated tool usage detection - Remove database-dependent tools causing initialization errors
This commit is contained in:
2505
tests/agents/test_agent.py
Normal file
2505
tests/agents/test_agent.py
Normal file
File diff suppressed because it is too large
Load Diff
117
tests/agents/test_agent_inject_date.py
Normal file
117
tests/agents/test_agent_inject_date.py
Normal file
@@ -0,0 +1,117 @@
|
||||
from datetime import datetime
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
def test_agent_inject_date():
|
||||
"""Test that the inject_date flag injects the current date into the task.
|
||||
|
||||
Tests that when inject_date=True, the current date is added to the task description.
|
||||
"""
|
||||
with patch("datetime.datetime") as mock_datetime:
|
||||
mock_datetime.now.return_value = datetime(2025, 1, 1)
|
||||
|
||||
agent = Agent(
|
||||
role="test_agent",
|
||||
goal="test_goal",
|
||||
backstory="test_backstory",
|
||||
inject_date=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Store original description
|
||||
original_description = task.description
|
||||
|
||||
agent._inject_date_to_task(task)
|
||||
|
||||
assert "Current Date: 2025-01-01" in task.description
|
||||
assert task.description != original_description
|
||||
|
||||
|
||||
def test_agent_without_inject_date():
|
||||
"""Test that without inject_date flag, no date is injected.
|
||||
|
||||
Tests that when inject_date=False (default), no date is added to the task description.
|
||||
"""
|
||||
agent = Agent(
|
||||
role="test_agent",
|
||||
goal="test_goal",
|
||||
backstory="test_backstory",
|
||||
# inject_date is False by default
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
original_description = task.description
|
||||
|
||||
agent._inject_date_to_task(task)
|
||||
|
||||
assert task.description == original_description
|
||||
|
||||
|
||||
def test_agent_inject_date_custom_format():
|
||||
"""Test that the inject_date flag with custom date_format works correctly.
|
||||
|
||||
Tests that when inject_date=True with a custom date_format, the date is formatted correctly.
|
||||
"""
|
||||
with patch("datetime.datetime") as mock_datetime:
|
||||
mock_datetime.now.return_value = datetime(2025, 1, 1)
|
||||
|
||||
agent = Agent(
|
||||
role="test_agent",
|
||||
goal="test_goal",
|
||||
backstory="test_backstory",
|
||||
inject_date=True,
|
||||
date_format="%d/%m/%Y",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Store original description
|
||||
original_description = task.description
|
||||
|
||||
agent._inject_date_to_task(task)
|
||||
|
||||
assert "Current Date: 01/01/2025" in task.description
|
||||
assert task.description != original_description
|
||||
|
||||
|
||||
def test_agent_inject_date_invalid_format():
|
||||
"""Test error handling with invalid date format.
|
||||
|
||||
Tests that when an invalid date_format is provided, the task description remains unchanged.
|
||||
"""
|
||||
agent = Agent(
|
||||
role="test_agent",
|
||||
goal="test_goal",
|
||||
backstory="test_backstory",
|
||||
inject_date=True,
|
||||
date_format="invalid",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
original_description = task.description
|
||||
|
||||
agent._inject_date_to_task(task)
|
||||
|
||||
assert task.description == original_description
|
||||
263
tests/agents/test_agent_reasoning.py
Normal file
263
tests/agents/test_agent_reasoning.py
Normal file
@@ -0,0 +1,263 @@
|
||||
"""Tests for reasoning in agents."""
|
||||
|
||||
import json
|
||||
import pytest
|
||||
|
||||
from crewai import Agent, Task
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.reasoning_handler import AgentReasoning
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llm_responses():
|
||||
"""Fixture for mock LLM responses."""
|
||||
return {
|
||||
"ready": "I'll solve this simple math problem.\n\nREADY: I am ready to execute the task.\n\n",
|
||||
"not_ready": "I need to think about derivatives.\n\nNOT READY: I need to refine my plan because I'm not sure about the derivative rules.",
|
||||
"ready_after_refine": "I'll use the power rule for derivatives where d/dx(x^n) = n*x^(n-1).\n\nREADY: I am ready to execute the task.",
|
||||
"execution": "4",
|
||||
}
|
||||
|
||||
|
||||
def test_agent_with_reasoning(mock_llm_responses):
|
||||
"""Test agent with reasoning."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Simple math task: What's 2+2?",
|
||||
expected_output="The answer should be a number.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
agent.llm.call = lambda messages, *args, **kwargs: (
|
||||
mock_llm_responses["ready"]
|
||||
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
|
||||
else mock_llm_responses["execution"]
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == mock_llm_responses["execution"]
|
||||
assert "Reasoning Plan:" in task.description
|
||||
|
||||
|
||||
def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
|
||||
"""Test agent with reasoning that requires refinement."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
max_reasoning_attempts=2,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Complex math task: What's the derivative of x²?",
|
||||
expected_output="The answer should be a mathematical expression.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
call_count = [0]
|
||||
|
||||
def mock_llm_call(messages, *args, **kwargs):
|
||||
if any(
|
||||
"create a detailed plan" in msg.get("content", "") for msg in messages
|
||||
) or any("refine your plan" in msg.get("content", "") for msg in messages):
|
||||
call_count[0] += 1
|
||||
if call_count[0] == 1:
|
||||
return mock_llm_responses["not_ready"]
|
||||
else:
|
||||
return mock_llm_responses["ready_after_refine"]
|
||||
else:
|
||||
return "2x"
|
||||
|
||||
agent.llm.call = mock_llm_call
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == "2x"
|
||||
assert call_count[0] == 2 # Should have made 2 reasoning calls
|
||||
assert "Reasoning Plan:" in task.description
|
||||
|
||||
|
||||
def test_agent_with_reasoning_max_attempts_reached():
|
||||
"""Test agent with reasoning that reaches max attempts without being ready."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
max_reasoning_attempts=2,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Complex math task: Solve the Riemann hypothesis.",
|
||||
expected_output="A proof or disproof of the hypothesis.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
call_count = [0]
|
||||
|
||||
def mock_llm_call(messages, *args, **kwargs):
|
||||
if any(
|
||||
"create a detailed plan" in msg.get("content", "") for msg in messages
|
||||
) or any("refine your plan" in msg.get("content", "") for msg in messages):
|
||||
call_count[0] += 1
|
||||
return f"Attempt {call_count[0]}: I need more time to think.\n\nNOT READY: I need to refine my plan further."
|
||||
else:
|
||||
return "This is an unsolved problem in mathematics."
|
||||
|
||||
agent.llm.call = mock_llm_call
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == "This is an unsolved problem in mathematics."
|
||||
assert (
|
||||
call_count[0] == 2
|
||||
) # Should have made exactly 2 reasoning calls (max_attempts)
|
||||
assert "Reasoning Plan:" in task.description
|
||||
|
||||
|
||||
def test_agent_reasoning_input_validation():
|
||||
"""Test input validation in AgentReasoning."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="Both task and agent must be provided"):
|
||||
AgentReasoning(task=None, agent=agent)
|
||||
|
||||
task = Task(description="Simple task", expected_output="Simple output")
|
||||
with pytest.raises(ValueError, match="Both task and agent must be provided"):
|
||||
AgentReasoning(task=task, agent=None)
|
||||
|
||||
|
||||
def test_agent_reasoning_error_handling():
|
||||
"""Test error handling during the reasoning process."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Task that will cause an error",
|
||||
expected_output="Output that will never be generated",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
call_count = [0]
|
||||
|
||||
def mock_llm_call_error(*args, **kwargs):
|
||||
call_count[0] += 1
|
||||
if call_count[0] <= 2: # First calls are for reasoning
|
||||
raise Exception("LLM error during reasoning")
|
||||
return "Fallback execution result" # Return a value for task execution
|
||||
|
||||
agent.llm.call = mock_llm_call_error
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == "Fallback execution result"
|
||||
assert call_count[0] > 2 # Ensure we called the mock multiple times
|
||||
|
||||
|
||||
def test_agent_with_function_calling():
|
||||
"""Test agent with reasoning using function calling."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Simple math task: What's 2+2?",
|
||||
expected_output="The answer should be a number.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
agent.llm.supports_function_calling = lambda: True
|
||||
|
||||
def mock_function_call(messages, *args, **kwargs):
|
||||
if "tools" in kwargs:
|
||||
return json.dumps(
|
||||
{"plan": "I'll solve this simple math problem: 2+2=4.", "ready": True}
|
||||
)
|
||||
else:
|
||||
return "4"
|
||||
|
||||
agent.llm.call = mock_function_call
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == "4"
|
||||
assert "Reasoning Plan:" in task.description
|
||||
assert "I'll solve this simple math problem: 2+2=4." in task.description
|
||||
|
||||
|
||||
def test_agent_with_function_calling_fallback():
|
||||
"""Test agent with reasoning using function calling that falls back to text parsing."""
|
||||
llm = LLM("gpt-3.5-turbo")
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="To test the reasoning feature",
|
||||
backstory="I am a test agent created to verify the reasoning feature works correctly.",
|
||||
llm=llm,
|
||||
reasoning=True,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Simple math task: What's 2+2?",
|
||||
expected_output="The answer should be a number.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
agent.llm.supports_function_calling = lambda: True
|
||||
|
||||
def mock_function_call(messages, *args, **kwargs):
|
||||
if "tools" in kwargs:
|
||||
return "Invalid JSON that will trigger fallback. READY: I am ready to execute the task."
|
||||
else:
|
||||
return "4"
|
||||
|
||||
agent.llm.call = mock_function_call
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result == "4"
|
||||
assert "Reasoning Plan:" in task.description
|
||||
assert "Invalid JSON that will trigger fallback" in task.description
|
||||
534
tests/agents/test_lite_agent.py
Normal file
534
tests/agents/test_lite_agent.py
Normal file
@@ -0,0 +1,534 @@
|
||||
from collections import defaultdict
|
||||
from typing import cast
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai import LLM, Agent
|
||||
from crewai.flow import Flow, start
|
||||
from crewai.lite_agent import LiteAgent, LiteAgentOutput
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.events.agent_events import LiteAgentExecutionStartedEvent
|
||||
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from unittest.mock import patch
|
||||
|
||||
|
||||
# A simple test tool
|
||||
class SecretLookupTool(BaseTool):
|
||||
name: str = "secret_lookup"
|
||||
description: str = "A tool to lookup secrets"
|
||||
|
||||
def _run(self) -> str:
|
||||
return "SUPERSECRETPASSWORD123"
|
||||
|
||||
|
||||
# Define Mock Search Tool
|
||||
class WebSearchTool(BaseTool):
|
||||
"""Tool for searching the web for information."""
|
||||
|
||||
name: str = "search_web"
|
||||
description: str = "Search the web for information about a topic."
|
||||
|
||||
def _run(self, query: str) -> str:
|
||||
"""Search the web for information about a topic."""
|
||||
# This is a mock implementation
|
||||
if "tokyo" in query.lower():
|
||||
return "Tokyo's population in 2023 was approximately 21 million people in the city proper, and 37 million in the greater metropolitan area."
|
||||
elif "climate change" in query.lower() and "coral" in query.lower():
|
||||
return "Climate change severely impacts coral reefs through: 1) Ocean warming causing coral bleaching, 2) Ocean acidification reducing calcification, 3) Sea level rise affecting light availability, 4) Increased storm frequency damaging reef structures. Sources: NOAA Coral Reef Conservation Program, Global Coral Reef Alliance."
|
||||
else:
|
||||
return f"Found information about {query}: This is a simulated search result for demonstration purposes."
|
||||
|
||||
|
||||
# Define Mock Calculator Tool
|
||||
class CalculatorTool(BaseTool):
|
||||
"""Tool for performing calculations."""
|
||||
|
||||
name: str = "calculate"
|
||||
description: str = "Calculate the result of a mathematical expression."
|
||||
|
||||
def _run(self, expression: str) -> str:
|
||||
"""Calculate the result of a mathematical expression."""
|
||||
try:
|
||||
result = eval(expression, {"__builtins__": {}})
|
||||
return f"The result of {expression} is {result}"
|
||||
except Exception as e:
|
||||
return f"Error calculating {expression}: {str(e)}"
|
||||
|
||||
|
||||
# Define a custom response format using Pydantic
|
||||
class ResearchResult(BaseModel):
|
||||
"""Structure for research results."""
|
||||
|
||||
main_findings: str = Field(description="The main findings from the research")
|
||||
key_points: list[str] = Field(description="List of key points")
|
||||
sources: list[str] = Field(description="List of sources used")
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.parametrize("verbose", [True, False])
|
||||
def test_lite_agent_created_with_correct_parameters(monkeypatch, verbose):
|
||||
"""Test that LiteAgent is created with the correct parameters when Agent.kickoff() is called."""
|
||||
# Create a test agent with specific parameters
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
custom_tools = [WebSearchTool(), CalculatorTool()]
|
||||
max_iter = 10
|
||||
max_execution_time = 300
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test Goal",
|
||||
backstory="Test Backstory",
|
||||
llm=llm,
|
||||
tools=custom_tools,
|
||||
max_iter=max_iter,
|
||||
max_execution_time=max_execution_time,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
||||
# Create a mock to capture the created LiteAgent
|
||||
created_lite_agent = None
|
||||
original_lite_agent = LiteAgent
|
||||
|
||||
# Define a mock LiteAgent class that captures its arguments
|
||||
class MockLiteAgent(original_lite_agent):
|
||||
def __init__(self, **kwargs):
|
||||
nonlocal created_lite_agent
|
||||
created_lite_agent = kwargs
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Patch the LiteAgent class
|
||||
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
|
||||
|
||||
# Call kickoff to create the LiteAgent
|
||||
agent.kickoff("Test query")
|
||||
|
||||
# Verify all parameters were passed correctly
|
||||
assert created_lite_agent is not None
|
||||
assert created_lite_agent["role"] == "Test Agent"
|
||||
assert created_lite_agent["goal"] == "Test Goal"
|
||||
assert created_lite_agent["backstory"] == "Test Backstory"
|
||||
assert created_lite_agent["llm"] == llm
|
||||
assert len(created_lite_agent["tools"]) == 2
|
||||
assert isinstance(created_lite_agent["tools"][0], WebSearchTool)
|
||||
assert isinstance(created_lite_agent["tools"][1], CalculatorTool)
|
||||
assert created_lite_agent["max_iterations"] == max_iter
|
||||
assert created_lite_agent["max_execution_time"] == max_execution_time
|
||||
assert created_lite_agent["verbose"] == verbose
|
||||
assert created_lite_agent["response_format"] is None
|
||||
|
||||
# Test with a response_format
|
||||
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
|
||||
|
||||
class TestResponse(BaseModel):
|
||||
test_field: str
|
||||
|
||||
agent.kickoff("Test query", response_format=TestResponse)
|
||||
assert created_lite_agent["response_format"] == TestResponse
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_lite_agent_with_tools():
|
||||
"""Test that Agent can use tools."""
|
||||
# Create a LiteAgent with tools
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find information about the population of Tokyo",
|
||||
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
||||
llm=llm,
|
||||
tools=[WebSearchTool()],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = agent.kickoff(
|
||||
"What is the population of Tokyo and how many people would that be per square kilometer if Tokyo's area is 2,194 square kilometers?"
|
||||
)
|
||||
|
||||
assert (
|
||||
"21 million" in result.raw or "37 million" in result.raw
|
||||
), "Agent should find Tokyo's population"
|
||||
assert (
|
||||
"per square kilometer" in result.raw
|
||||
), "Agent should calculate population density"
|
||||
|
||||
received_events = []
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def event_handler(source, event):
|
||||
received_events.append(event)
|
||||
|
||||
agent.kickoff("What are the effects of climate change on coral reefs?")
|
||||
|
||||
# Verify tool usage events were emitted
|
||||
assert len(received_events) > 0, "Tool usage events should be emitted"
|
||||
event = received_events[0]
|
||||
assert isinstance(event, ToolUsageStartedEvent)
|
||||
assert event.agent_role == "Research Assistant"
|
||||
assert event.tool_name == "search_web"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_lite_agent_structured_output():
|
||||
"""Test that Agent can return a simple structured output."""
|
||||
|
||||
class SimpleOutput(BaseModel):
|
||||
"""Simple structure for agent outputs."""
|
||||
|
||||
summary: str = Field(description="A brief summary of findings")
|
||||
confidence: int = Field(description="Confidence level from 1-100")
|
||||
|
||||
web_search_tool = WebSearchTool()
|
||||
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
agent = Agent(
|
||||
role="Info Gatherer",
|
||||
goal="Provide brief information",
|
||||
backstory="You gather and summarize information quickly.",
|
||||
llm=llm,
|
||||
tools=[web_search_tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = agent.kickoff(
|
||||
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence",
|
||||
response_format=SimpleOutput,
|
||||
)
|
||||
|
||||
print(f"\n=== Agent Result Type: {type(result)}")
|
||||
print(f"=== Agent Result: {result}")
|
||||
print(f"=== Pydantic: {result.pydantic}")
|
||||
|
||||
assert result.pydantic is not None, "Should return a Pydantic model"
|
||||
|
||||
output = cast(SimpleOutput, result.pydantic)
|
||||
|
||||
assert isinstance(output.summary, str), "Summary should be a string"
|
||||
assert len(output.summary) > 0, "Summary should not be empty"
|
||||
assert isinstance(output.confidence, int), "Confidence should be an integer"
|
||||
assert 1 <= output.confidence <= 100, "Confidence should be between 1 and 100"
|
||||
|
||||
assert "tokyo" in output.summary.lower() or "population" in output.summary.lower()
|
||||
|
||||
assert result.usage_metrics is not None
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_lite_agent_returns_usage_metrics():
|
||||
"""Test that LiteAgent returns usage metrics."""
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find information about the population of Tokyo",
|
||||
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
||||
llm=llm,
|
||||
tools=[WebSearchTool()],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = agent.kickoff(
|
||||
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence"
|
||||
)
|
||||
|
||||
assert result.usage_metrics is not None
|
||||
assert result.usage_metrics["total_tokens"] > 0
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.asyncio
|
||||
async def test_lite_agent_returns_usage_metrics_async():
|
||||
"""Test that LiteAgent returns usage metrics when run asynchronously."""
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find information about the population of Tokyo",
|
||||
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
||||
llm=llm,
|
||||
tools=[WebSearchTool()],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = await agent.kickoff_async(
|
||||
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence"
|
||||
)
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
assert "21 million" in result.raw or "37 million" in result.raw
|
||||
assert result.usage_metrics is not None
|
||||
assert result.usage_metrics["total_tokens"] > 0
|
||||
|
||||
|
||||
class TestFlow(Flow):
|
||||
"""A test flow that creates and runs an agent."""
|
||||
|
||||
def __init__(self, llm, tools):
|
||||
self.llm = llm
|
||||
self.tools = tools
|
||||
super().__init__()
|
||||
|
||||
@start()
|
||||
def start(self):
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test Goal",
|
||||
backstory="Test Backstory",
|
||||
llm=self.llm,
|
||||
tools=self.tools,
|
||||
)
|
||||
return agent.kickoff("Test query")
|
||||
|
||||
|
||||
def verify_agent_parent_flow(result, agent, flow):
|
||||
"""Verify that both the result and agent have the correct parent flow."""
|
||||
assert result.parent_flow is flow
|
||||
assert agent is not None
|
||||
assert agent.parent_flow is flow
|
||||
|
||||
|
||||
def test_sets_parent_flow_when_inside_flow():
|
||||
captured_agent = None
|
||||
|
||||
mock_llm = Mock(spec=LLM)
|
||||
mock_llm.call.return_value = "Test response"
|
||||
|
||||
class MyFlow(Flow):
|
||||
@start()
|
||||
def start(self):
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test Goal",
|
||||
backstory="Test Backstory",
|
||||
llm=mock_llm,
|
||||
tools=[WebSearchTool()],
|
||||
)
|
||||
return agent.kickoff("Test query")
|
||||
|
||||
flow = MyFlow()
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LiteAgentExecutionStartedEvent)
|
||||
def capture_agent(source, event):
|
||||
nonlocal captured_agent
|
||||
captured_agent = source
|
||||
|
||||
flow.kickoff()
|
||||
assert captured_agent.parent_flow is flow
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_is_called_using_string():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import (
|
||||
LLMGuardrailCompletedEvent,
|
||||
LLMGuardrailStartedEvent,
|
||||
)
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail="""Only include Brazilian players, both women and men""",
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert len(guardrail_events["started"]) == 2
|
||||
assert len(guardrail_events["completed"]) == 2
|
||||
assert not guardrail_events["completed"][0].success
|
||||
assert guardrail_events["completed"][1].success
|
||||
assert (
|
||||
"Here are the top 10 best soccer players in the world, focusing exclusively on Brazilian players"
|
||||
in result.raw
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_is_called_using_callable():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import (
|
||||
LLMGuardrailCompletedEvent,
|
||||
LLMGuardrailStartedEvent,
|
||||
)
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (True, "Pelé - Santos, 1958"),
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 1 best players in the world?")
|
||||
|
||||
assert len(guardrail_events["started"]) == 1
|
||||
assert len(guardrail_events["completed"]) == 1
|
||||
assert guardrail_events["completed"][0].success
|
||||
assert "Pelé - Santos, 1958" in result.raw
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_reached_attempt_limit():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import (
|
||||
LLMGuardrailCompletedEvent,
|
||||
LLMGuardrailStartedEvent,
|
||||
)
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (
|
||||
False,
|
||||
"You are not allowed to include Brazilian players",
|
||||
),
|
||||
guardrail_max_retries=2,
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
Exception, match="Agent's guardrail failed validation after 2 retries"
|
||||
):
|
||||
agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert len(guardrail_events["started"]) == 3 # 2 retries + 1 initial call
|
||||
assert len(guardrail_events["completed"]) == 3 # 2 retries + 1 initial call
|
||||
assert not guardrail_events["completed"][0].success
|
||||
assert not guardrail_events["completed"][1].success
|
||||
assert not guardrail_events["completed"][2].success
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_output_when_guardrail_returns_base_model():
|
||||
class Player(BaseModel):
|
||||
name: str
|
||||
country: str
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (
|
||||
True,
|
||||
Player(name="Lionel Messi", country="Argentina"),
|
||||
),
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert result.pydantic == Player(name="Lionel Messi", country="Argentina")
|
||||
|
||||
|
||||
def test_lite_agent_with_custom_llm_and_guardrails():
|
||||
"""Test that CustomLLM (inheriting from BaseLLM) works with guardrails."""
|
||||
|
||||
class CustomLLM(BaseLLM):
|
||||
def __init__(self, response: str = "Custom response"):
|
||||
super().__init__(model="custom-model")
|
||||
self.response = response
|
||||
self.call_count = 0
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages,
|
||||
tools=None,
|
||||
callbacks=None,
|
||||
available_functions=None,
|
||||
from_task=None,
|
||||
from_agent=None,
|
||||
) -> str:
|
||||
self.call_count += 1
|
||||
|
||||
if "valid" in str(messages) and "feedback" in str(messages):
|
||||
return '{"valid": true, "feedback": null}'
|
||||
|
||||
if "Thought:" in str(messages):
|
||||
return f"Thought: I will analyze soccer players\nFinal Answer: {self.response}"
|
||||
|
||||
return self.response
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
return False
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
return 4096
|
||||
|
||||
custom_llm = CustomLLM(response="Brazilian soccer players are the best!")
|
||||
|
||||
agent = LiteAgent(
|
||||
role="Sports Analyst",
|
||||
goal="Analyze soccer players",
|
||||
backstory="You analyze soccer players and their performance.",
|
||||
llm=custom_llm,
|
||||
guardrail="Only include Brazilian players",
|
||||
)
|
||||
|
||||
result = agent.kickoff("Tell me about the best soccer players")
|
||||
|
||||
assert custom_llm.call_count > 0
|
||||
assert "Brazilian" in result.raw
|
||||
|
||||
custom_llm2 = CustomLLM(response="Original response")
|
||||
|
||||
def test_guardrail(output):
|
||||
return (True, "Modified by guardrail")
|
||||
|
||||
agent2 = LiteAgent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
llm=custom_llm2,
|
||||
guardrail=test_guardrail,
|
||||
)
|
||||
|
||||
result2 = agent2.kickoff("Test message")
|
||||
assert result2.raw == "Modified by guardrail"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_lite_agent_with_invalid_llm():
|
||||
"""Test that LiteAgent raises proper error when create_llm returns None."""
|
||||
with patch("crewai.lite_agent.create_llm", return_value=None):
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
LiteAgent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
llm="invalid-model",
|
||||
)
|
||||
assert "Expected LLM instance of type BaseLLM" in str(exc_info.value)
|
||||
Reference in New Issue
Block a user