fix: address flaky tests (#3363)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled

fix: resolve flaky tests and race conditions in test suite

- Fix telemetry/event tests by patching class methods instead of instances
- Use unique temp files/directories to prevent CI race conditions
- Reset singleton state between tests
- Mock embedchain.Client.setup() to prevent JSON corruption
- Rename test files to test_*.py convention
- Move agent tests to tests/agents directory
- Fix repeated tool usage detection
- Remove database-dependent tools causing initialization errors
This commit is contained in:
Greyson LaLonde
2025-08-20 13:34:09 -04:00
committed by GitHub
parent 7fdf9f9290
commit 641c156c17
35 changed files with 670 additions and 527 deletions

2505
tests/agents/test_agent.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,117 @@
from datetime import datetime
from unittest.mock import patch
from crewai.agent import Agent
from crewai.task import Task
def test_agent_inject_date():
"""Test that the inject_date flag injects the current date into the task.
Tests that when inject_date=True, the current date is added to the task description.
"""
with patch("datetime.datetime") as mock_datetime:
mock_datetime.now.return_value = datetime(2025, 1, 1)
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
# Store original description
original_description = task.description
agent._inject_date_to_task(task)
assert "Current Date: 2025-01-01" in task.description
assert task.description != original_description
def test_agent_without_inject_date():
"""Test that without inject_date flag, no date is injected.
Tests that when inject_date=False (default), no date is added to the task description.
"""
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
# inject_date is False by default
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
original_description = task.description
agent._inject_date_to_task(task)
assert task.description == original_description
def test_agent_inject_date_custom_format():
"""Test that the inject_date flag with custom date_format works correctly.
Tests that when inject_date=True with a custom date_format, the date is formatted correctly.
"""
with patch("datetime.datetime") as mock_datetime:
mock_datetime.now.return_value = datetime(2025, 1, 1)
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
date_format="%d/%m/%Y",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
# Store original description
original_description = task.description
agent._inject_date_to_task(task)
assert "Current Date: 01/01/2025" in task.description
assert task.description != original_description
def test_agent_inject_date_invalid_format():
"""Test error handling with invalid date format.
Tests that when an invalid date_format is provided, the task description remains unchanged.
"""
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
date_format="invalid",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
original_description = task.description
agent._inject_date_to_task(task)
assert task.description == original_description

View File

@@ -0,0 +1,263 @@
"""Tests for reasoning in agents."""
import json
import pytest
from crewai import Agent, Task
from crewai.llm import LLM
from crewai.utilities.reasoning_handler import AgentReasoning
@pytest.fixture
def mock_llm_responses():
"""Fixture for mock LLM responses."""
return {
"ready": "I'll solve this simple math problem.\n\nREADY: I am ready to execute the task.\n\n",
"not_ready": "I need to think about derivatives.\n\nNOT READY: I need to refine my plan because I'm not sure about the derivative rules.",
"ready_after_refine": "I'll use the power rule for derivatives where d/dx(x^n) = n*x^(n-1).\n\nREADY: I am ready to execute the task.",
"execution": "4",
}
def test_agent_with_reasoning(mock_llm_responses):
"""Test agent with reasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True,
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.call = lambda messages, *args, **kwargs: (
mock_llm_responses["ready"]
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
else mock_llm_responses["execution"]
)
result = agent.execute_task(task)
assert result == mock_llm_responses["execution"]
assert "Reasoning Plan:" in task.description
def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
"""Test agent with reasoning that requires refinement."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
max_reasoning_attempts=2,
verbose=True,
)
task = Task(
description="Complex math task: What's the derivative of x²?",
expected_output="The answer should be a mathematical expression.",
agent=agent,
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any(
"create a detailed plan" in msg.get("content", "") for msg in messages
) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
if call_count[0] == 1:
return mock_llm_responses["not_ready"]
else:
return mock_llm_responses["ready_after_refine"]
else:
return "2x"
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "2x"
assert call_count[0] == 2 # Should have made 2 reasoning calls
assert "Reasoning Plan:" in task.description
def test_agent_with_reasoning_max_attempts_reached():
"""Test agent with reasoning that reaches max attempts without being ready."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
max_reasoning_attempts=2,
verbose=True,
)
task = Task(
description="Complex math task: Solve the Riemann hypothesis.",
expected_output="A proof or disproof of the hypothesis.",
agent=agent,
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any(
"create a detailed plan" in msg.get("content", "") for msg in messages
) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
return f"Attempt {call_count[0]}: I need more time to think.\n\nNOT READY: I need to refine my plan further."
else:
return "This is an unsolved problem in mathematics."
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "This is an unsolved problem in mathematics."
assert (
call_count[0] == 2
) # Should have made exactly 2 reasoning calls (max_attempts)
assert "Reasoning Plan:" in task.description
def test_agent_reasoning_input_validation():
"""Test input validation in AgentReasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
)
with pytest.raises(ValueError, match="Both task and agent must be provided"):
AgentReasoning(task=None, agent=agent)
task = Task(description="Simple task", expected_output="Simple output")
with pytest.raises(ValueError, match="Both task and agent must be provided"):
AgentReasoning(task=task, agent=None)
def test_agent_reasoning_error_handling():
"""Test error handling during the reasoning process."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
)
task = Task(
description="Task that will cause an error",
expected_output="Output that will never be generated",
agent=agent,
)
call_count = [0]
def mock_llm_call_error(*args, **kwargs):
call_count[0] += 1
if call_count[0] <= 2: # First calls are for reasoning
raise Exception("LLM error during reasoning")
return "Fallback execution result" # Return a value for task execution
agent.llm.call = mock_llm_call_error
result = agent.execute_task(task)
assert result == "Fallback execution result"
assert call_count[0] > 2 # Ensure we called the mock multiple times
def test_agent_with_function_calling():
"""Test agent with reasoning using function calling."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True,
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return json.dumps(
{"plan": "I'll solve this simple math problem: 2+2=4.", "ready": True}
)
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "I'll solve this simple math problem: 2+2=4." in task.description
def test_agent_with_function_calling_fallback():
"""Test agent with reasoning using function calling that falls back to text parsing."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True,
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return "Invalid JSON that will trigger fallback. READY: I am ready to execute the task."
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "Invalid JSON that will trigger fallback" in task.description

View File

@@ -0,0 +1,534 @@
from collections import defaultdict
from typing import cast
from unittest.mock import Mock
import pytest
from pydantic import BaseModel, Field
from crewai import LLM, Agent
from crewai.flow import Flow, start
from crewai.lite_agent import LiteAgent, LiteAgentOutput
from crewai.tools import BaseTool
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import LiteAgentExecutionStartedEvent
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.llms.base_llm import BaseLLM
from unittest.mock import patch
# A simple test tool
class SecretLookupTool(BaseTool):
name: str = "secret_lookup"
description: str = "A tool to lookup secrets"
def _run(self) -> str:
return "SUPERSECRETPASSWORD123"
# Define Mock Search Tool
class WebSearchTool(BaseTool):
"""Tool for searching the web for information."""
name: str = "search_web"
description: str = "Search the web for information about a topic."
def _run(self, query: str) -> str:
"""Search the web for information about a topic."""
# This is a mock implementation
if "tokyo" in query.lower():
return "Tokyo's population in 2023 was approximately 21 million people in the city proper, and 37 million in the greater metropolitan area."
elif "climate change" in query.lower() and "coral" in query.lower():
return "Climate change severely impacts coral reefs through: 1) Ocean warming causing coral bleaching, 2) Ocean acidification reducing calcification, 3) Sea level rise affecting light availability, 4) Increased storm frequency damaging reef structures. Sources: NOAA Coral Reef Conservation Program, Global Coral Reef Alliance."
else:
return f"Found information about {query}: This is a simulated search result for demonstration purposes."
# Define Mock Calculator Tool
class CalculatorTool(BaseTool):
"""Tool for performing calculations."""
name: str = "calculate"
description: str = "Calculate the result of a mathematical expression."
def _run(self, expression: str) -> str:
"""Calculate the result of a mathematical expression."""
try:
result = eval(expression, {"__builtins__": {}})
return f"The result of {expression} is {result}"
except Exception as e:
return f"Error calculating {expression}: {str(e)}"
# Define a custom response format using Pydantic
class ResearchResult(BaseModel):
"""Structure for research results."""
main_findings: str = Field(description="The main findings from the research")
key_points: list[str] = Field(description="List of key points")
sources: list[str] = Field(description="List of sources used")
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.parametrize("verbose", [True, False])
def test_lite_agent_created_with_correct_parameters(monkeypatch, verbose):
"""Test that LiteAgent is created with the correct parameters when Agent.kickoff() is called."""
# Create a test agent with specific parameters
llm = LLM(model="gpt-4o-mini")
custom_tools = [WebSearchTool(), CalculatorTool()]
max_iter = 10
max_execution_time = 300
agent = Agent(
role="Test Agent",
goal="Test Goal",
backstory="Test Backstory",
llm=llm,
tools=custom_tools,
max_iter=max_iter,
max_execution_time=max_execution_time,
verbose=verbose,
)
# Create a mock to capture the created LiteAgent
created_lite_agent = None
original_lite_agent = LiteAgent
# Define a mock LiteAgent class that captures its arguments
class MockLiteAgent(original_lite_agent):
def __init__(self, **kwargs):
nonlocal created_lite_agent
created_lite_agent = kwargs
super().__init__(**kwargs)
# Patch the LiteAgent class
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
# Call kickoff to create the LiteAgent
agent.kickoff("Test query")
# Verify all parameters were passed correctly
assert created_lite_agent is not None
assert created_lite_agent["role"] == "Test Agent"
assert created_lite_agent["goal"] == "Test Goal"
assert created_lite_agent["backstory"] == "Test Backstory"
assert created_lite_agent["llm"] == llm
assert len(created_lite_agent["tools"]) == 2
assert isinstance(created_lite_agent["tools"][0], WebSearchTool)
assert isinstance(created_lite_agent["tools"][1], CalculatorTool)
assert created_lite_agent["max_iterations"] == max_iter
assert created_lite_agent["max_execution_time"] == max_execution_time
assert created_lite_agent["verbose"] == verbose
assert created_lite_agent["response_format"] is None
# Test with a response_format
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
class TestResponse(BaseModel):
test_field: str
agent.kickoff("Test query", response_format=TestResponse)
assert created_lite_agent["response_format"] == TestResponse
@pytest.mark.vcr(filter_headers=["authorization"])
def test_lite_agent_with_tools():
"""Test that Agent can use tools."""
# Create a LiteAgent with tools
llm = LLM(model="gpt-4o-mini")
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
llm=llm,
tools=[WebSearchTool()],
verbose=True,
)
result = agent.kickoff(
"What is the population of Tokyo and how many people would that be per square kilometer if Tokyo's area is 2,194 square kilometers?"
)
assert (
"21 million" in result.raw or "37 million" in result.raw
), "Agent should find Tokyo's population"
assert (
"per square kilometer" in result.raw
), "Agent should calculate population density"
received_events = []
@crewai_event_bus.on(ToolUsageStartedEvent)
def event_handler(source, event):
received_events.append(event)
agent.kickoff("What are the effects of climate change on coral reefs?")
# Verify tool usage events were emitted
assert len(received_events) > 0, "Tool usage events should be emitted"
event = received_events[0]
assert isinstance(event, ToolUsageStartedEvent)
assert event.agent_role == "Research Assistant"
assert event.tool_name == "search_web"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_lite_agent_structured_output():
"""Test that Agent can return a simple structured output."""
class SimpleOutput(BaseModel):
"""Simple structure for agent outputs."""
summary: str = Field(description="A brief summary of findings")
confidence: int = Field(description="Confidence level from 1-100")
web_search_tool = WebSearchTool()
llm = LLM(model="gpt-4o-mini")
agent = Agent(
role="Info Gatherer",
goal="Provide brief information",
backstory="You gather and summarize information quickly.",
llm=llm,
tools=[web_search_tool],
verbose=True,
)
result = agent.kickoff(
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence",
response_format=SimpleOutput,
)
print(f"\n=== Agent Result Type: {type(result)}")
print(f"=== Agent Result: {result}")
print(f"=== Pydantic: {result.pydantic}")
assert result.pydantic is not None, "Should return a Pydantic model"
output = cast(SimpleOutput, result.pydantic)
assert isinstance(output.summary, str), "Summary should be a string"
assert len(output.summary) > 0, "Summary should not be empty"
assert isinstance(output.confidence, int), "Confidence should be an integer"
assert 1 <= output.confidence <= 100, "Confidence should be between 1 and 100"
assert "tokyo" in output.summary.lower() or "population" in output.summary.lower()
assert result.usage_metrics is not None
return result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_lite_agent_returns_usage_metrics():
"""Test that LiteAgent returns usage metrics."""
llm = LLM(model="gpt-4o-mini")
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
llm=llm,
tools=[WebSearchTool()],
verbose=True,
)
result = agent.kickoff(
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence"
)
assert result.usage_metrics is not None
assert result.usage_metrics["total_tokens"] > 0
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_lite_agent_returns_usage_metrics_async():
"""Test that LiteAgent returns usage metrics when run asynchronously."""
llm = LLM(model="gpt-4o-mini")
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
llm=llm,
tools=[WebSearchTool()],
verbose=True,
)
result = await agent.kickoff_async(
"What is the population of Tokyo? Return your structured output in JSON format with the following fields: summary, confidence"
)
assert isinstance(result, LiteAgentOutput)
assert "21 million" in result.raw or "37 million" in result.raw
assert result.usage_metrics is not None
assert result.usage_metrics["total_tokens"] > 0
class TestFlow(Flow):
"""A test flow that creates and runs an agent."""
def __init__(self, llm, tools):
self.llm = llm
self.tools = tools
super().__init__()
@start()
def start(self):
agent = Agent(
role="Test Agent",
goal="Test Goal",
backstory="Test Backstory",
llm=self.llm,
tools=self.tools,
)
return agent.kickoff("Test query")
def verify_agent_parent_flow(result, agent, flow):
"""Verify that both the result and agent have the correct parent flow."""
assert result.parent_flow is flow
assert agent is not None
assert agent.parent_flow is flow
def test_sets_parent_flow_when_inside_flow():
captured_agent = None
mock_llm = Mock(spec=LLM)
mock_llm.call.return_value = "Test response"
class MyFlow(Flow):
@start()
def start(self):
agent = Agent(
role="Test Agent",
goal="Test Goal",
backstory="Test Backstory",
llm=mock_llm,
tools=[WebSearchTool()],
)
return agent.kickoff("Test query")
flow = MyFlow()
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LiteAgentExecutionStartedEvent)
def capture_agent(source, event):
nonlocal captured_agent
captured_agent = source
flow.kickoff()
assert captured_agent.parent_flow is flow
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_is_called_using_string():
guardrail_events = defaultdict(list)
from crewai.utilities.events import (
LLMGuardrailCompletedEvent,
LLMGuardrailStartedEvent,
)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail="""Only include Brazilian players, both women and men""",
)
result = agent.kickoff(messages="Top 10 best players in the world?")
assert len(guardrail_events["started"]) == 2
assert len(guardrail_events["completed"]) == 2
assert not guardrail_events["completed"][0].success
assert guardrail_events["completed"][1].success
assert (
"Here are the top 10 best soccer players in the world, focusing exclusively on Brazilian players"
in result.raw
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_is_called_using_callable():
guardrail_events = defaultdict(list)
from crewai.utilities.events import (
LLMGuardrailCompletedEvent,
LLMGuardrailStartedEvent,
)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (True, "Pelé - Santos, 1958"),
)
result = agent.kickoff(messages="Top 1 best players in the world?")
assert len(guardrail_events["started"]) == 1
assert len(guardrail_events["completed"]) == 1
assert guardrail_events["completed"][0].success
assert "Pelé - Santos, 1958" in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_reached_attempt_limit():
guardrail_events = defaultdict(list)
from crewai.utilities.events import (
LLMGuardrailCompletedEvent,
LLMGuardrailStartedEvent,
)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (
False,
"You are not allowed to include Brazilian players",
),
guardrail_max_retries=2,
)
with pytest.raises(
Exception, match="Agent's guardrail failed validation after 2 retries"
):
agent.kickoff(messages="Top 10 best players in the world?")
assert len(guardrail_events["started"]) == 3 # 2 retries + 1 initial call
assert len(guardrail_events["completed"]) == 3 # 2 retries + 1 initial call
assert not guardrail_events["completed"][0].success
assert not guardrail_events["completed"][1].success
assert not guardrail_events["completed"][2].success
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_output_when_guardrail_returns_base_model():
class Player(BaseModel):
name: str
country: str
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (
True,
Player(name="Lionel Messi", country="Argentina"),
),
)
result = agent.kickoff(messages="Top 10 best players in the world?")
assert result.pydantic == Player(name="Lionel Messi", country="Argentina")
def test_lite_agent_with_custom_llm_and_guardrails():
"""Test that CustomLLM (inheriting from BaseLLM) works with guardrails."""
class CustomLLM(BaseLLM):
def __init__(self, response: str = "Custom response"):
super().__init__(model="custom-model")
self.response = response
self.call_count = 0
def call(
self,
messages,
tools=None,
callbacks=None,
available_functions=None,
from_task=None,
from_agent=None,
) -> str:
self.call_count += 1
if "valid" in str(messages) and "feedback" in str(messages):
return '{"valid": true, "feedback": null}'
if "Thought:" in str(messages):
return f"Thought: I will analyze soccer players\nFinal Answer: {self.response}"
return self.response
def supports_function_calling(self) -> bool:
return False
def supports_stop_words(self) -> bool:
return False
def get_context_window_size(self) -> int:
return 4096
custom_llm = CustomLLM(response="Brazilian soccer players are the best!")
agent = LiteAgent(
role="Sports Analyst",
goal="Analyze soccer players",
backstory="You analyze soccer players and their performance.",
llm=custom_llm,
guardrail="Only include Brazilian players",
)
result = agent.kickoff("Tell me about the best soccer players")
assert custom_llm.call_count > 0
assert "Brazilian" in result.raw
custom_llm2 = CustomLLM(response="Original response")
def test_guardrail(output):
return (True, "Modified by guardrail")
agent2 = LiteAgent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm=custom_llm2,
guardrail=test_guardrail,
)
result2 = agent2.kickoff("Test message")
assert result2.raw == "Modified by guardrail"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_lite_agent_with_invalid_llm():
"""Test that LiteAgent raises proper error when create_llm returns None."""
with patch("crewai.lite_agent.create_llm", return_value=None):
with pytest.raises(ValueError) as exc_info:
LiteAgent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="invalid-model",
)
assert "Expected LLM instance of type BaseLLM" in str(exc_info.value)