fix: Update embedding configuration and fix type errors

- Add configurable embedding providers (OpenAI, Ollama)
- Fix type hints in base_tool and structured_tool
- Add proper json property implementations
- Update documentation for memory configuration
- Add environment variables for embedding configuration
- Fix type errors in task and crew output classes

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 19:16:51 +00:00
parent 409892d65f
commit 636dac6efb
13 changed files with 232 additions and 48 deletions

45
docs/memory.md Normal file
View File

@@ -0,0 +1,45 @@
# Memory in CrewAI
CrewAI provides a robust memory system that allows agents to retain and recall information from previous interactions.
## Configuring Embedding Providers
CrewAI supports multiple embedding providers for memory functionality:
- OpenAI (default) - Requires `OPENAI_API_KEY`
- Ollama - Requires `CREWAI_OLLAMA_URL` (defaults to "http://localhost:11434/api/embeddings")
### Environment Variables
Configure the embedding provider using these environment variables:
- `CREWAI_EMBEDDING_PROVIDER`: Provider name (default: "openai")
- `CREWAI_EMBEDDING_MODEL`: Model name (default: "text-embedding-3-small")
- `CREWAI_OLLAMA_URL`: URL for Ollama API (when using Ollama provider)
### Example Configuration
```python
# Using OpenAI (default)
os.environ["OPENAI_API_KEY"] = "your-api-key"
# Using Ollama
os.environ["CREWAI_EMBEDDING_PROVIDER"] = "ollama"
os.environ["CREWAI_EMBEDDING_MODEL"] = "llama2" # or any other model supported by your Ollama instance
os.environ["CREWAI_OLLAMA_URL"] = "http://localhost:11434/api/embeddings" # optional, this is the default
```
## Memory Usage
When an agent has memory enabled, it can access and store information from previous interactions:
```python
agent = Agent(
role="Researcher",
goal="Research AI topics",
backstory="You're an AI researcher",
memory=True # Enable memory for this agent
)
```
The memory system uses embeddings to store and retrieve relevant information, allowing agents to maintain context across multiple interactions and tasks.