mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
WIP: generated summary from documents split, could also create memgpt approach
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
|
||||
@@ -10,6 +10,10 @@ from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
import tiktoken
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from openai import BadRequestError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
@@ -40,6 +44,8 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
system_template: Optional[str] = None
|
||||
prompt_template: Optional[str] = None
|
||||
response_template: Optional[str] = None
|
||||
retry_summarize: bool = False
|
||||
retry_summarize_count: int = 2
|
||||
|
||||
def _call(
|
||||
self,
|
||||
@@ -120,6 +126,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
for attempt in range(self.retry_summarize_count):
|
||||
try:
|
||||
if self._should_force_answer():
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
@@ -128,7 +135,39 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
intermediate_steps = self._prepare_intermediate_steps(
|
||||
intermediate_steps
|
||||
)
|
||||
if self.retry_summarize:
|
||||
encoding = tiktoken.encoding_for_model(self.llm.model_name)
|
||||
original_token_count = len(
|
||||
encoding.encode(intermediate_steps[0][1])
|
||||
)
|
||||
if original_token_count > 8000:
|
||||
print(
|
||||
"BEFORE AGENT PLAN TOKEN LENGTH",
|
||||
original_token_count,
|
||||
)
|
||||
text = intermediate_steps[0][1]
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
separators=["\n\n", "\n"],
|
||||
chunk_size=8000,
|
||||
chunk_overlap=500,
|
||||
)
|
||||
docs = text_splitter.create_documents([text])
|
||||
print("DOCS", docs)
|
||||
print("DOCS length", len(docs))
|
||||
breakpoint()
|
||||
# TODO: store to vector db - using memgpt like strategy
|
||||
summary_chain = load_summarize_chain(
|
||||
self.llm, chain_type="map_reduce", verbose=True
|
||||
)
|
||||
summary = summary_chain.run(docs)
|
||||
|
||||
print("SUMMARY:", summary)
|
||||
|
||||
intermediate_steps[0] = (intermediate_steps[0][0], summary)
|
||||
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
|
||||
@@ -185,10 +224,32 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
yield AgentStep(action=output, observation=observation)
|
||||
return
|
||||
|
||||
except BadRequestError as e:
|
||||
print("bad request string str(e)", str(e))
|
||||
if (
|
||||
"context_length_exceeded" in str(e)
|
||||
and attempt < self.retry_summarize_count - 1
|
||||
):
|
||||
print(
|
||||
f"Context length exceeded. Retrying with summarization (attempt {attempt + 1})..."
|
||||
)
|
||||
self.retry_summarize = True
|
||||
breakpoint()
|
||||
continue
|
||||
else:
|
||||
print("Error now raising occurred in _iter_next_step:", e)
|
||||
raise e
|
||||
|
||||
except Exception as e:
|
||||
print("Error occurred in _iter_next_step:", e)
|
||||
raise e
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
if self.should_ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(output.return_values["output"])
|
||||
human_feedback = self._ask_human_input(
|
||||
output.return_values["output"]
|
||||
)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(output, human_feedback)
|
||||
@@ -235,7 +296,10 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
agent=self.crew_agent,
|
||||
action=agent_action,
|
||||
)
|
||||
|
||||
# print("tool_usage", tool_usage)
|
||||
tool_calling = tool_usage.parse(agent_action.log)
|
||||
# print("tool_calling", tool_calling)
|
||||
|
||||
if isinstance(tool_calling, ToolUsageErrorException):
|
||||
observation = tool_calling.message
|
||||
@@ -249,7 +313,9 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
else:
|
||||
observation = self._i18n.errors("wrong_tool_name").format(
|
||||
tool=tool_calling.tool_name,
|
||||
tools=", ".join([tool.name.casefold() for tool in self.tools]),
|
||||
tools=", ".join(
|
||||
[tool.name.casefold() for tool in self.tools]
|
||||
),
|
||||
)
|
||||
yield AgentStep(action=agent_action, observation=observation)
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ try:
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4"]
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4o"]
|
||||
|
||||
|
||||
class ToolUsageErrorException(Exception):
|
||||
|
||||
Reference in New Issue
Block a user