WIP: generated summary from documents split, could also create memgpt approach

This commit is contained in:
Lorenze Jay
2024-07-30 22:50:05 -07:00
parent 149cb1ffa1
commit 62868c00db
3 changed files with 197 additions and 130 deletions

View File

@@ -1,6 +1,7 @@
import time import time
from typing import TYPE_CHECKING, Optional from typing import TYPE_CHECKING, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem

View File

@@ -10,6 +10,10 @@ from langchain_core.exceptions import OutputParserException
from langchain_core.tools import BaseTool from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf from pydantic import InstanceOf
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from openai import BadRequestError
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler from crewai.agents.tools_handler import ToolsHandler
@@ -40,6 +44,8 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
system_template: Optional[str] = None system_template: Optional[str] = None
prompt_template: Optional[str] = None prompt_template: Optional[str] = None
response_template: Optional[str] = None response_template: Optional[str] = None
retry_summarize: bool = False
retry_summarize_count: int = 2
def _call( def _call(
self, self,
@@ -120,138 +126,198 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
Override this to take control of how the agent makes and acts on choices. Override this to take control of how the agent makes and acts on choices.
""" """
try: for attempt in range(self.retry_summarize_count):
if self._should_force_answer(): try:
error = self._i18n.errors("force_final_answer") if self._should_force_answer():
output = AgentAction("_Exception", error, error) error = self._i18n.errors("force_final_answer")
self.have_forced_answer = True output = AgentAction("_Exception", error, error)
yield AgentStep(action=output, observation=error) self.have_forced_answer = True
return yield AgentStep(action=output, observation=error)
return
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps) intermediate_steps = self._prepare_intermediate_steps(
intermediate_steps
# Call the LLM to see what to do.
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.handle_parsing_errors, bool):
raise_error = not self.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise ValueError(
"An output parsing error occurred. "
"In order to pass this error back to the agent and have it try "
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
f"This is the error: {str(e)}"
) )
str(e) if self.retry_summarize:
if isinstance(self.handle_parsing_errors, bool): encoding = tiktoken.encoding_for_model(self.llm.model_name)
if e.send_to_llm: original_token_count = len(
observation = f"\n{str(e.observation)}" encoding.encode(intermediate_steps[0][1])
str(e.llm_output)
else:
observation = ""
elif isinstance(self.handle_parsing_errors, str):
observation = f"\n{self.handle_parsing_errors}"
elif callable(self.handle_parsing_errors):
observation = f"\n{self.handle_parsing_errors(e)}"
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, "")
if run_manager:
run_manager.on_agent_action(output, color="green")
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = ExceptionTool().run(
output.tool_input,
verbose=False,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
if self._should_force_answer():
error = self._i18n.errors("force_final_answer")
output = AgentAction("_Exception", error, error)
yield AgentStep(action=output, observation=error)
return
yield AgentStep(action=output, observation=observation)
return
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
human_feedback = self._ask_human_input(output.return_values["output"])
if self.crew and self.crew._train:
self._handle_crew_training_output(output, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.should_ask_for_human_input = False
action = AgentAction(
tool="Human Input", tool_input=human_feedback, log=output.log
)
yield AgentStep(
action=action,
observation=self._i18n.slice("human_feedback").format(
human_feedback=human_feedback
),
)
return
else:
if self.crew and self.crew._train:
self._handle_crew_training_output(output)
yield output
return
self._create_short_term_memory(output)
actions: List[AgentAction]
actions = [output] if isinstance(output, AgentAction) else output
yield from actions
for agent_action in actions:
if run_manager:
run_manager.on_agent_action(agent_action, color="green")
tool_usage = ToolUsage(
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task,
agent=self.crew_agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.log)
if isinstance(tool_calling, ToolUsageErrorException):
observation = tool_calling.message
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in name_to_tool_map
]:
observation = tool_usage.use(tool_calling, agent_action.log)
else:
observation = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
) )
yield AgentStep(action=agent_action, observation=observation) if original_token_count > 8000:
print(
"BEFORE AGENT PLAN TOKEN LENGTH",
original_token_count,
)
text = intermediate_steps[0][1]
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n"],
chunk_size=8000,
chunk_overlap=500,
)
docs = text_splitter.create_documents([text])
print("DOCS", docs)
print("DOCS length", len(docs))
breakpoint()
# TODO: store to vector db - using memgpt like strategy
summary_chain = load_summarize_chain(
self.llm, chain_type="map_reduce", verbose=True
)
summary = summary_chain.run(docs)
print("SUMMARY:", summary)
intermediate_steps[0] = (intermediate_steps[0][0], summary)
# Call the LLM to see what to do.
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.handle_parsing_errors, bool):
raise_error = not self.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise ValueError(
"An output parsing error occurred. "
"In order to pass this error back to the agent and have it try "
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
f"This is the error: {str(e)}"
)
str(e)
if isinstance(self.handle_parsing_errors, bool):
if e.send_to_llm:
observation = f"\n{str(e.observation)}"
str(e.llm_output)
else:
observation = ""
elif isinstance(self.handle_parsing_errors, str):
observation = f"\n{self.handle_parsing_errors}"
elif callable(self.handle_parsing_errors):
observation = f"\n{self.handle_parsing_errors(e)}"
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, "")
if run_manager:
run_manager.on_agent_action(output, color="green")
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = ExceptionTool().run(
output.tool_input,
verbose=False,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
if self._should_force_answer():
error = self._i18n.errors("force_final_answer")
output = AgentAction("_Exception", error, error)
yield AgentStep(action=output, observation=error)
return
yield AgentStep(action=output, observation=observation)
return
except BadRequestError as e:
print("bad request string str(e)", str(e))
if (
"context_length_exceeded" in str(e)
and attempt < self.retry_summarize_count - 1
):
print(
f"Context length exceeded. Retrying with summarization (attempt {attempt + 1})..."
)
self.retry_summarize = True
breakpoint()
continue
else:
print("Error now raising occurred in _iter_next_step:", e)
raise e
except Exception as e:
print("Error occurred in _iter_next_step:", e)
raise e
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
human_feedback = self._ask_human_input(
output.return_values["output"]
)
if self.crew and self.crew._train:
self._handle_crew_training_output(output, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.should_ask_for_human_input = False
action = AgentAction(
tool="Human Input", tool_input=human_feedback, log=output.log
)
yield AgentStep(
action=action,
observation=self._i18n.slice("human_feedback").format(
human_feedback=human_feedback
),
)
return
else:
if self.crew and self.crew._train:
self._handle_crew_training_output(output)
yield output
return
self._create_short_term_memory(output)
actions: List[AgentAction]
actions = [output] if isinstance(output, AgentAction) else output
yield from actions
for agent_action in actions:
if run_manager:
run_manager.on_agent_action(agent_action, color="green")
tool_usage = ToolUsage(
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task,
agent=self.crew_agent,
action=agent_action,
)
# print("tool_usage", tool_usage)
tool_calling = tool_usage.parse(agent_action.log)
# print("tool_calling", tool_calling)
if isinstance(tool_calling, ToolUsageErrorException):
observation = tool_calling.message
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in name_to_tool_map
]:
observation = tool_usage.use(tool_calling, agent_action.log)
else:
observation = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join(
[tool.name.casefold() for tool in self.tools]
),
)
yield AgentStep(action=agent_action, observation=observation)
def _handle_crew_training_output( def _handle_crew_training_output(
self, output: AgentFinish, human_feedback: str | None = None self, output: AgentFinish, human_feedback: str | None = None

View File

@@ -16,7 +16,7 @@ try:
except ImportError: except ImportError:
agentops = None agentops = None
OPENAI_BIGGER_MODELS = ["gpt-4"] OPENAI_BIGGER_MODELS = ["gpt-4o"]
class ToolUsageErrorException(Exception): class ToolUsageErrorException(Exception):