mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 08:38:30 +00:00
fix contenxt windown
This commit is contained in:
@@ -37,6 +37,7 @@ with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
import litellm
|
||||
from litellm import Choices
|
||||
from litellm.exceptions import ContextWindowExceededError
|
||||
from litellm.litellm_core_utils.get_supported_openai_params import (
|
||||
get_supported_openai_params,
|
||||
)
|
||||
@@ -597,6 +598,11 @@ class LLM(BaseLLM):
|
||||
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
|
||||
return full_response
|
||||
|
||||
except ContextWindowExceededError as e:
|
||||
# Catch context window errors from litellm and convert them to our own exception type.
|
||||
# This exception is handled by CrewAgentExecutor._invoke_loop() which can then
|
||||
# decide whether to summarize the content or abort based on the respect_context_window flag.
|
||||
raise LLMContextLengthExceededException(str(e))
|
||||
except Exception as e:
|
||||
logging.error(f"Error in streaming response: {str(e)}")
|
||||
if full_response.strip():
|
||||
@@ -711,7 +717,16 @@ class LLM(BaseLLM):
|
||||
str: The response text
|
||||
"""
|
||||
# --- 1) Make the completion call
|
||||
try:
|
||||
# Attempt to make the completion call, but catch context window errors
|
||||
# and convert them to our own exception type for consistent handling
|
||||
# across the codebase. This allows CrewAgentExecutor to handle context
|
||||
# length issues appropriately.
|
||||
response = litellm.completion(**params)
|
||||
except ContextWindowExceededError as e:
|
||||
# Convert litellm's context window error to our own exception type
|
||||
# for consistent handling in the rest of the codebase
|
||||
raise LLMContextLengthExceededException(str(e))
|
||||
|
||||
# --- 2) Extract response message and content
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
@@ -870,14 +885,16 @@ class LLM(BaseLLM):
|
||||
params, callbacks, available_functions
|
||||
)
|
||||
|
||||
except LLMContextLengthExceededException:
|
||||
# Re-raise LLMContextLengthExceededException as it should be handled
|
||||
# by the CrewAgentExecutor._invoke_loop method, which can then decide
|
||||
# whether to summarize the content or abort based on the respect_context_window flag
|
||||
raise
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LLMCallFailedEvent(error=str(e)),
|
||||
)
|
||||
if not LLMContextLengthExceededException(
|
||||
str(e)
|
||||
)._is_context_limit_error(str(e)):
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
@@ -373,6 +373,44 @@ def get_weather_tool_schema():
|
||||
},
|
||||
}
|
||||
|
||||
def test_context_window_exceeded_error_handling():
|
||||
"""Test that litellm.ContextWindowExceededError is converted to LLMContextLengthExceededException."""
|
||||
from litellm.exceptions import ContextWindowExceededError
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
|
||||
llm = LLM(model="gpt-4")
|
||||
|
||||
# Test non-streaming response
|
||||
with patch("litellm.completion") as mock_completion:
|
||||
mock_completion.side_effect = ContextWindowExceededError(
|
||||
"This model's maximum context length is 8192 tokens. However, your messages resulted in 10000 tokens.",
|
||||
model="gpt-4",
|
||||
llm_provider="openai"
|
||||
)
|
||||
|
||||
with pytest.raises(LLMContextLengthExceededException) as excinfo:
|
||||
llm.call("This is a test message")
|
||||
|
||||
assert "context length exceeded" in str(excinfo.value).lower()
|
||||
assert "8192 tokens" in str(excinfo.value)
|
||||
|
||||
# Test streaming response
|
||||
llm = LLM(model="gpt-4", stream=True)
|
||||
with patch("litellm.completion") as mock_completion:
|
||||
mock_completion.side_effect = ContextWindowExceededError(
|
||||
"This model's maximum context length is 8192 tokens. However, your messages resulted in 10000 tokens.",
|
||||
model="gpt-4",
|
||||
llm_provider="openai"
|
||||
)
|
||||
|
||||
with pytest.raises(LLMContextLengthExceededException) as excinfo:
|
||||
llm.call("This is a test message")
|
||||
|
||||
assert "context length exceeded" in str(excinfo.value).lower()
|
||||
assert "8192 tokens" in str(excinfo.value)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.fixture
|
||||
|
||||
Reference in New Issue
Block a user