fixes from discussion

This commit is contained in:
Lorenze Jay
2024-11-27 10:38:20 -08:00
parent 3f87bf3ada
commit 5b03d6c8bc
7 changed files with 119 additions and 79 deletions

View File

@@ -51,7 +51,7 @@ crew = Crew(
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge={"sources": [string_source], "metadata": {"preference": "personal"}}, # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
knowledge_sources=[string_source], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
@@ -63,18 +63,29 @@ Sometimes you may want to append knowledge sources to an individual agent. You c
```python
agent = Agent(
...
knowledge={
"sources": [
StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"},
)
],
"metadata": {"preference": "personal"},
},
knowledge_sources=[
StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"},
)
],
)
```
## Agent Level Knowledge Sources
You can also append knowledge sources to an individual agent by setting the `knowledge_sources` parameter in the `Agent` class.
```python
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"},
)
agent = Agent(
...
knowledge_sources=[string_source],
)
```
## Embedder Configuration
@@ -88,10 +99,7 @@ string_source = StringKnowledgeSource(
)
crew = Crew(
...
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
"embedder_config": {"provider": "openai", "config": {"model": "text-embedding-3-small"}},
},
knowledge_sources=[string_source],
embedder_config={"provider": "ollama", "config": {"model": "nomic-embed-text:latest"}},
)
```

View File

@@ -21,6 +21,7 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
def mock_agent_ops_provider():
@@ -124,14 +125,17 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
knowledge: Optional[Union[List[BaseKnowledgeSource], Knowledge]] = Field(
default=None,
description="Knowledge for the agent. Add knowledge sources to the knowledge object.",
)
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent. Add knowledge sources to the knowledge object.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
@@ -245,14 +249,13 @@ class Agent(BaseAgent):
def _set_knowledge(self):
try:
if self.knowledge:
if self.knowledge_sources:
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
print("knowledge_agent_name", knowledge_agent_name)
if isinstance(self.knowledge, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
sources=self.knowledge,
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
)
@@ -313,22 +316,21 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self.knowledge and isinstance(self.knowledge, Knowledge):
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
agent_knowledge_context = self.knowledge.extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.crew and self.crew.knowledge:
knowledge_snippets = self.crew.knowledge.query([task.prompt()])
crew_knowledge_context = self.crew.knowledge.extract_knowledge_context(
knowledge_snippets
)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
if knowledge_snippets:
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)

View File

@@ -203,9 +203,12 @@ class Crew(BaseModel):
default=[],
description="List of execution logs for tasks",
)
knowledge: Optional[Union[List[BaseKnowledgeSource], Knowledge]] = Field(
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
description="Knowledge for the crew. Add knowledge sources to the knowledge object.",
)
@field_validator("id", mode="before")
@@ -284,13 +287,13 @@ class Crew(BaseModel):
@model_validator(mode="after")
def create_crew_knowledge(self) -> "Crew":
"""Create the knowledge for the crew."""
if self.knowledge:
if self.knowledge_sources:
try:
if isinstance(self.knowledge, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
sources=self.knowledge,
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder,
collection_name="crew",
)
@@ -954,6 +957,11 @@ class Crew(BaseModel):
result = self._execute_tasks(self.tasks, start_index, True)
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self._knowledge:
return self._knowledge.query(query)
return None
def copy(self):
"""Create a deep copy of the Crew."""

View File

@@ -62,18 +62,6 @@ class Knowledge(BaseModel):
)
return results
def extract_knowledge_context(
self, knowledge_snippets: List[Dict[str, Any]]
) -> str:
"""Extract knowledge from the task prompt."""
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
snippet = "\n".join(valid_snippets)
return f"Additional Information: {snippet}" if valid_snippets else ""
def _add_sources(self):
for source in self.sources:
source.storage = self.storage

View File

@@ -3,12 +3,16 @@ import io
import logging
import chromadb
import os
import chromadb.errors
from crewai.utilities.paths import db_storage_path
from typing import Optional, List, Dict, Any
from typing import Optional, List, Dict, Any, Union
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
from chromadb.config import Settings
from chromadb.api import ClientAPI
from crewai.utilities.logger import Logger
@contextlib.contextmanager
@@ -36,15 +40,15 @@ class KnowledgeStorage(BaseKnowledgeStorage):
collection: Optional[chromadb.Collection] = None
collection_name: Optional[str] = "knowledge"
app: Optional[chromadb.PersistentClient] = None
app: Optional[ClientAPI] = None
def __init__(
self,
embedder_config: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.embedder_config = embedder_config
self.collection_name = collection_name
self._set_embedder_config(embedder_config)
def search(
self,
@@ -91,7 +95,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name
name=collection_name, embedding_function=self.embedder_config
)
else:
raise Exception("Vector Database Client not initialized")
@@ -110,18 +114,39 @@ class KnowledgeStorage(BaseKnowledgeStorage):
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
self,
documents: List[str],
metadata: Union[Dict[str, Any], List[Dict[str, Any]]],
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
try:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents]
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except Exception as e:
Logger(verbose=True).log(
"error", f"Failed to upsert documents: {e}", "red"
)
raise
else:
raise Exception("Collection not initialized")

View File

@@ -0,0 +1,12 @@
from typing import Any, Dict, List
def extract_knowledge_context(knowledge_snippets: List[Dict[str, Any]]) -> str:
"""Extract knowledge from the task prompt."""
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
snippet = "\n".join(valid_snippets)
return f"Additional Information: {snippet}" if valid_snippets else ""

View File

@@ -3,7 +3,6 @@
import os
from unittest import mock
from unittest.mock import patch
import pytest
from crewai import Agent, Crew, Task
@@ -11,7 +10,6 @@ from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
@@ -1627,10 +1625,9 @@ def test_agent_with_knowledge_sources_context():
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge=[string_source],
knowledge_sources=[string_source],
)
# Test that agent is properly initialized with knowledge sources
assert isinstance(agent.knowledge, Knowledge)
assert len(agent.knowledge.sources) == 1
assert isinstance(agent.knowledge.sources[0], BaseKnowledgeSource)
assert agent.knowledge.sources[0].metadata == {"preference": "personal"}
assert isinstance(agent.knowledge_sources, list)
assert len(agent.knowledge_sources) == 1
assert isinstance(agent.knowledge_sources[0], BaseKnowledgeSource)
assert agent.knowledge_sources[0].metadata == {"preference": "personal"}