Merge branch 'main' into lg-improve-tranning

This commit is contained in:
Lucas Gomide
2025-07-01 10:33:32 -03:00
committed by GitHub
14 changed files with 788 additions and 44 deletions

View File

@@ -752,6 +752,55 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
<Tab title="Agent & Task Tracking">
All LLM events in CrewAI include agent and task information, allowing you to track and filter LLM interactions by specific agents or tasks:
```python
from crewai import LLM, Agent, Task, Crew
from crewai.utilities.events import LLMStreamChunkEvent
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(LLMStreamChunkEvent)
def on_llm_stream_chunk(source, event):
if researcher.id == event.agent_id:
print("\n==============\n Got event:", event, "\n==============\n")
my_listener = MyCustomListener()
llm = LLM(model="gpt-4o-mini", temperature=0, stream=True)
researcher = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
llm=llm,
)
search = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[search])
result = crew.kickoff(
inputs={"question": "..."}
)
```
<Info>
This feature is particularly useful for:
- Debugging specific agent behaviors
- Logging LLM usage by task type
- Auditing which agents are making what types of LLM calls
- Performance monitoring of specific tasks
</Info>
</Tab>
</Tabs>
## Structured LLM Calls

View File

@@ -775,6 +775,7 @@ class Agent(BaseAgent):
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
id=self.id,
role=self.role,
goal=self.goal,
backstory=self.backstory,

View File

@@ -159,6 +159,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
from_task=self.task
)
formatted_answer = process_llm_response(answer, self.use_stop_words)

View File

@@ -15,12 +15,14 @@ from typing import (
get_origin,
)
try:
from typing import Self
except ImportError:
from typing_extensions import Self
from pydantic import (
UUID4,
BaseModel,
Field,
InstanceOf,
@@ -129,6 +131,7 @@ class LiteAgent(FlowTrackable, BaseModel):
model_config = {"arbitrary_types_allowed": True}
# Core Agent Properties
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Goal of the agent")
backstory: str = Field(description="Backstory of the agent")
@@ -517,6 +520,7 @@ class LiteAgent(FlowTrackable, BaseModel):
messages=self._messages,
tools=None,
callbacks=self._callbacks,
from_agent=self,
),
)
@@ -526,6 +530,7 @@ class LiteAgent(FlowTrackable, BaseModel):
messages=self._messages,
callbacks=self._callbacks,
printer=self._printer,
from_agent=self,
)
# Emit LLM call completed event
@@ -534,13 +539,14 @@ class LiteAgent(FlowTrackable, BaseModel):
event=LLMCallCompletedEvent(
response=answer,
call_type=LLMCallType.LLM_CALL,
from_agent=self,
),
)
except Exception as e:
# Emit LLM call failed event
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
event=LLMCallFailedEvent(error=str(e), from_agent=self),
)
raise e

View File

@@ -419,6 +419,8 @@ class LLM(BaseLLM):
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> str:
"""Handle a streaming response from the LLM.
@@ -426,6 +428,8 @@ class LLM(BaseLLM):
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
from_task: Optional task object
from_agent: Optional agent object
Returns:
str: The complete response text
@@ -510,6 +514,8 @@ class LLM(BaseLLM):
tool_calls=tool_calls,
accumulated_tool_args=accumulated_tool_args,
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
)
if result is not None:
chunk_content = result
@@ -527,7 +533,7 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMStreamChunkEvent(chunk=chunk_content),
event=LLMStreamChunkEvent(chunk=chunk_content, from_task=from_task, from_agent=from_agent),
)
# --- 4) Fallback to non-streaming if no content received
if not full_response.strip() and chunk_count == 0:
@@ -540,7 +546,7 @@ class LLM(BaseLLM):
"stream_options", None
) # Remove stream_options for non-streaming call
return self._handle_non_streaming_response(
non_streaming_params, callbacks, available_functions
non_streaming_params, callbacks, available_functions, from_task, from_agent
)
# --- 5) Handle empty response with chunks
@@ -625,7 +631,7 @@ class LLM(BaseLLM):
# Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL, from_task, from_agent)
return full_response
# --- 9) Handle tool calls if present
@@ -637,7 +643,7 @@ class LLM(BaseLLM):
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# --- 11) Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL, from_task, from_agent)
return full_response
except ContextWindowExceededError as e:
@@ -649,14 +655,14 @@ class LLM(BaseLLM):
logging.error(f"Error in streaming response: {str(e)}")
if full_response.strip():
logging.warning(f"Returning partial response despite error: {str(e)}")
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL, from_task, from_agent)
return full_response
# Emit failed event and re-raise the exception
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
event=LLMCallFailedEvent(error=str(e), from_task=from_task, from_agent=from_agent),
)
raise Exception(f"Failed to get streaming response: {str(e)}")
@@ -665,6 +671,8 @@ class LLM(BaseLLM):
tool_calls: List[ChatCompletionDeltaToolCall],
accumulated_tool_args: DefaultDict[int, AccumulatedToolArgs],
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> None | str:
for tool_call in tool_calls:
current_tool_accumulator = accumulated_tool_args[tool_call.index]
@@ -682,6 +690,8 @@ class LLM(BaseLLM):
event=LLMStreamChunkEvent(
tool_call=tool_call.to_dict(),
chunk=tool_call.function.arguments,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -748,6 +758,8 @@ class LLM(BaseLLM):
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> str:
"""Handle a non-streaming response from the LLM.
@@ -755,6 +767,8 @@ class LLM(BaseLLM):
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
from_task: Optional Task that invoked the LLM
from_agent: Optional Agent that invoked the LLM
Returns:
str: The response text
@@ -795,7 +809,7 @@ class LLM(BaseLLM):
# --- 5) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL, from_task, from_agent)
return text_response
# --- 6) Handle tool calls if present
@@ -804,7 +818,7 @@ class LLM(BaseLLM):
return tool_result
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL, from_task, from_agent)
return text_response
def _handle_tool_call(
@@ -889,6 +903,8 @@ class LLM(BaseLLM):
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> Union[str, Any]:
"""High-level LLM call method.
@@ -903,6 +919,8 @@ class LLM(BaseLLM):
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
from_task: Optional Task that invoked the LLM
from_agent: Optional Agent that invoked the LLM
Returns:
Union[str, Any]: Either a text response from the LLM (str) or
@@ -922,6 +940,8 @@ class LLM(BaseLLM):
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -950,11 +970,11 @@ class LLM(BaseLLM):
# --- 7) Make the completion call and handle response
if self.stream:
return self._handle_streaming_response(
params, callbacks, available_functions
params, callbacks, available_functions, from_task, from_agent
)
else:
return self._handle_non_streaming_response(
params, callbacks, available_functions
params, callbacks, available_functions, from_task, from_agent
)
except LLMContextLengthExceededException:
@@ -966,12 +986,12 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
event=LLMCallFailedEvent(error=str(e), from_task=from_task, from_agent=from_agent),
)
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType, from_task: Optional[Any] = None, from_agent: Optional[Any] = None):
"""Handle the events for the LLM call.
Args:
@@ -981,7 +1001,7 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
event=LLMCallCompletedEvent(response=response, call_type=call_type, from_task=from_task, from_agent=from_agent),
)
def _format_messages_for_provider(

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Union
class BaseLLM(ABC):
@@ -47,6 +47,8 @@ class BaseLLM(ABC):
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
@@ -61,6 +63,7 @@ class BaseLLM(ABC):
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
from_task: Optional task caller to be used for the LLM call.
Returns:
Either a text response from the LLM (str) or

View File

@@ -16,6 +16,8 @@ class AISuiteLLM(BaseLLM):
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> Union[str, Any]:
completion_params = self._prepare_completion_params(messages, tools)
response = self.client.chat.completions.create(**completion_params)

View File

@@ -145,12 +145,16 @@ def get_llm_response(
messages: List[Dict[str, str]],
callbacks: List[Any],
printer: Printer,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
try:
answer = llm.call(
messages,
callbacks=callbacks,
from_task=from_task,
from_agent=from_agent,
)
except Exception as e:
printer.print(

View File

@@ -5,6 +5,32 @@ from pydantic import BaseModel
from crewai.utilities.events.base_events import BaseEvent
class LLMEventBase(BaseEvent):
task_name: Optional[str] = None
task_id: Optional[str] = None
agent_id: Optional[str] = None
agent_role: Optional[str] = None
def __init__(self, **data):
super().__init__(**data)
self._set_agent_params(data)
self._set_task_params(data)
def _set_agent_params(self, data: Dict[str, Any]):
task = data.get("from_task", None)
agent = task.agent if task else data.get("from_agent", None)
if not agent:
return
self.agent_id = agent.id
self.agent_role = agent.role
def _set_task_params(self, data: Dict[str, Any]):
if "from_task" in data and (task := data["from_task"]):
self.task_id = task.id
self.task_name = task.name
class LLMCallType(Enum):
"""Type of LLM call being made"""
@@ -13,7 +39,7 @@ class LLMCallType(Enum):
LLM_CALL = "llm_call"
class LLMCallStartedEvent(BaseEvent):
class LLMCallStartedEvent(LLMEventBase):
"""Event emitted when a LLM call starts
Attributes:
@@ -28,7 +54,7 @@ class LLMCallStartedEvent(BaseEvent):
available_functions: Optional[Dict[str, Any]] = None
class LLMCallCompletedEvent(BaseEvent):
class LLMCallCompletedEvent(LLMEventBase):
"""Event emitted when a LLM call completes"""
type: str = "llm_call_completed"
@@ -36,7 +62,7 @@ class LLMCallCompletedEvent(BaseEvent):
call_type: LLMCallType
class LLMCallFailedEvent(BaseEvent):
class LLMCallFailedEvent(LLMEventBase):
"""Event emitted when a LLM call fails"""
error: str
@@ -55,7 +81,7 @@ class ToolCall(BaseModel):
index: int
class LLMStreamChunkEvent(BaseEvent):
class LLMStreamChunkEvent(LLMEventBase):
"""Event emitted when a streaming chunk is received"""
type: str = "llm_stream_chunk"

View File

@@ -1,5 +1,4 @@
from typing import Any, Dict, List, Optional, Union
from unittest.mock import Mock
import pytest
@@ -31,6 +30,8 @@ class CustomLLM(BaseLLM):
tools=None,
callbacks=None,
available_functions=None,
from_task=None,
from_agent=None,
):
"""
Mock LLM call that returns a predefined response.

View File

@@ -0,0 +1,171 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Speaker. You are a
helpful assistant that just says hi\nYour personal goal is: Just say hi\n\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "say hi!"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
"stream": true, "stream_options": {"include_usage": true}}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '602'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":" \n"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}],"usage":null}
data: {"id":"chatcmpl-BoGFzpBc0nuAKcVrYlEEztNwzrUG6","object":"chat.completion.chunk","created":1751318591,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[],"usage":{"prompt_tokens":99,"completion_tokens":15,"total_tokens":114,"prompt_tokens_details":{"cached_tokens":0,"audio_tokens":0},"completion_tokens_details":{"reasoning_tokens":0,"audio_tokens":0,"accepted_prediction_tokens":0,"rejected_prediction_tokens":0}}}
data: [DONE]
'
headers:
CF-RAY:
- 9580b92adce5e838-GRU
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 30 Jun 2025 21:23:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=nhFmL5HNobQWdbf2Sd9Z8X9ad5zXKG7Ln7MlzuiuwP8-1751318592-1.0.1.1-5qDyF6nVC5d8PDerEmHSOgyWEYdzMdgyFRXqgiJB3FSyWWnvzL4PyVp6LGx9z0P5iTX8PNbxfUOEOYX.7bFaK6p.CyxLaXK7WpnQ3zeasG8;
path=/; expires=Mon, 30-Jun-25 21:53:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=APKo781sOKEk.HlN5nFBT1Mkid8Lj04kw6JPleI78bU-1751318592001-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '321'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '326'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999896'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_0b0f668953604810c182b1e83e9709fe
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,118 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expected criteria for
your final answer: hi\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSTW/bMAy9+1cQOsdDnI9m861ZMGAbBuyyHbYWBiMxtjaZEiS5aVHkvw+y09jd
OqAXA+bje3qP5GMGILQSJQjZYJStM/nW7j6z+vb9R739+mm707vj7sv2gffq/v2VEbPEsPtfJOMT
6420rTMUteUBlp4wUlItNutiOd8s15seaK0ik2i1i/nK5q1mnS/mi1U+3+TF2zO7sVpSECX8zAAA
Hvtv8smK7kUJ89lTpaUQsCZRXpoAhLcmVQSGoENEjmI2gtJyJO6tfwS2R5DIUOs7AoQ62QbkcCQP
cMMfNKOB6/6/hEZPdTwduoApC3fGTABkthHTLPoEt2fkdPFsbO283Ye/qOKgWYem8oTBcvIXonWi
R08ZwG0/m+5ZXOG8bV2sov1N/XPFVTHoiXElE3RxBqONaCb1zXL2gl6lKKI2YTJdIVE2pEbquArs
lLYTIJuk/tfNS9pDcs31a+RHQEpykVTlPCktnyce2zyli/1f22XKvWERyN9pSVXU5NMmFB2wM8Md
ifAQIrXVQXNN3nk9HNPBVcsVrldI75ZSZKfsDwAAAP//AwBulbOoWgMAAA==
headers:
CF-RAY:
- 957fa6e91a22023d-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 30 Jun 2025 18:15:58 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=9WXNY0u6p0Nlyb1G36cXHDgtwb1538JzaUNoS4tgrpo-1751307358-1.0.1.1-BAvg6Fgqsv3ITFxrC3z3E42AqgSZcGq4Gr1Wrjx56TOsljYynqCePNzQ79oAncT9KXehFnUMxA6JSf2lAfQOeSLVREY3_P6GjPkbcwIsVXw;
path=/; expires=Mon, 30-Jun-25 18:45:58 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=N5kr6p8e26f8scPW5s2uVOatzh2RYjlQb13eQUBsrts-1751307358295-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '308'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '310'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999823'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_78bb0375ac6e0939c8e05f66869e0137
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,165 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are TestAgent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expected criteria for
your final answer: hi\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": true, "stream_options":
{"include_usage": true}}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '896'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":" \n"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{"content":"
hi"},"logprobs":null,"finish_reason":null}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}],"usage":null}
data: {"id":"chatcmpl-BoFTMrRBBaVsju5o285dR7JBeVVvS","object":"chat.completion.chunk","created":1751315576,"model":"gpt-4o-mini-2024-07-18","service_tier":"default","system_fingerprint":"fp_34a54ae93c","choices":[],"usage":{"prompt_tokens":161,"completion_tokens":12,"total_tokens":173,"prompt_tokens_details":{"cached_tokens":0,"audio_tokens":0},"completion_tokens_details":{"reasoning_tokens":0,"audio_tokens":0,"accepted_prediction_tokens":0,"rejected_prediction_tokens":0}}}
data: [DONE]
'
headers:
CF-RAY:
- 95806f8e3fc2f213-GRU
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 30 Jun 2025 20:32:56 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=dxb.Rn1CsTQLjW9eU0KWonEuID9KkkVRJ1FaBBsW5gQ-1751315576-1.0.1.1-R7bLnCfrjJwtHYzbKEE9in7ilYfymelWgYg1OcPqSEllAFA9_R2ctsY0f7Mrv7i0dXaynAooDpLs9hGIzfgyBR9EgkRjqoaHbByPXjxy_5s;
path=/; expires=Mon, 30-Jun-25 21:02:56 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=MwdjLsfFXJDWzbJseVfA4MIpVAqLa7envAu7EAkdK4o-1751315576696-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '238'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '241'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999824'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_394b055696dfcdc221b5ecd0fba49e97
status:
code: 200
message: OK
version: 1

View File

@@ -57,23 +57,28 @@ def vcr_config(request) -> dict:
}
base_agent = Agent(
role="base_agent",
llm="gpt-4o-mini",
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
@pytest.fixture(scope="module")
def base_agent():
return Agent(
role="base_agent",
llm="gpt-4o-mini",
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
)
base_task = Task(
description="Just say hi",
expected_output="hi",
agent=base_agent,
)
@pytest.fixture(scope="module")
def base_task(base_agent):
return Task(
description="Just say hi",
expected_output="hi",
agent=base_agent,
)
event_listener = EventListener()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_start_kickoff_event():
def test_crew_emits_start_kickoff_event(base_agent, base_task):
received_events = []
mock_span = Mock()
@@ -101,7 +106,7 @@ def test_crew_emits_start_kickoff_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_end_kickoff_event():
def test_crew_emits_end_kickoff_event(base_agent, base_task):
received_events = []
@crewai_event_bus.on(CrewKickoffCompletedEvent)
@@ -119,7 +124,7 @@ def test_crew_emits_end_kickoff_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_test_kickoff_type_event():
def test_crew_emits_test_kickoff_type_event(base_agent, base_task):
received_events = []
mock_span = Mock()
@@ -165,7 +170,7 @@ def test_crew_emits_test_kickoff_type_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_kickoff_failed_event():
def test_crew_emits_kickoff_failed_event(base_agent, base_task):
received_events = []
with crewai_event_bus.scoped_handlers():
@@ -190,7 +195,7 @@ def test_crew_emits_kickoff_failed_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_start_task_event():
def test_crew_emits_start_task_event(base_agent, base_task):
received_events = []
@crewai_event_bus.on(TaskStartedEvent)
@@ -207,7 +212,7 @@ def test_crew_emits_start_task_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_end_task_event():
def test_crew_emits_end_task_event(base_agent, base_task):
received_events = []
@crewai_event_bus.on(TaskCompletedEvent)
@@ -235,7 +240,7 @@ def test_crew_emits_end_task_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_emits_failed_event_on_execution_error():
def test_task_emits_failed_event_on_execution_error(base_agent, base_task):
received_events = []
received_sources = []
@@ -272,7 +277,7 @@ def test_task_emits_failed_event_on_execution_error():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_emits_execution_started_and_completed_events():
def test_agent_emits_execution_started_and_completed_events(base_agent, base_task):
received_events = []
@crewai_event_bus.on(AgentExecutionStartedEvent)
@@ -301,7 +306,7 @@ def test_agent_emits_execution_started_and_completed_events():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_emits_execution_error_event():
def test_agent_emits_execution_error_event(base_agent, base_task):
received_events = []
@crewai_event_bus.on(AgentExecutionErrorEvent)
@@ -501,7 +506,7 @@ def test_flow_emits_method_execution_started_event():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_register_handler_adds_new_handler():
def test_register_handler_adds_new_handler(base_agent, base_task):
received_events = []
def custom_handler(source, event):
@@ -519,7 +524,7 @@ def test_register_handler_adds_new_handler():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multiple_handlers_for_same_event():
def test_multiple_handlers_for_same_event(base_agent, base_task):
received_events_1 = []
received_events_2 = []
@@ -613,6 +618,11 @@ def test_llm_emits_call_started_event():
assert received_events[0].type == "llm_call_started"
assert received_events[1].type == "llm_call_completed"
assert received_events[0].task_name is None
assert received_events[0].agent_role is None
assert received_events[0].agent_id is None
assert received_events[0].task_id is None
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_call_failed_event():
@@ -632,6 +642,10 @@ def test_llm_emits_call_failed_event():
assert len(received_events) == 1
assert received_events[0].type == "llm_call_failed"
assert received_events[0].error == error_message
assert received_events[0].task_name is None
assert received_events[0].agent_role is None
assert received_events[0].agent_id is None
assert received_events[0].task_id is None
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -742,7 +756,6 @@ def test_streaming_empty_response_handling():
received_chunks = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
@@ -779,3 +792,167 @@ def test_streaming_empty_response_handling():
finally:
# Restore the original method
llm.call = original_call
@pytest.mark.vcr(filter_headers=["authorization"])
def test_stream_llm_emits_event_with_task_and_agent_info():
completed_event = []
failed_event = []
started_event = []
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@crewai_event_bus.on(LLMCallStartedEvent)
def handle_llm_started(source, event):
started_event.append(event)
@crewai_event_bus.on(LLMCallCompletedEvent)
def handle_llm_completed(source, event):
completed_event.append(event)
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_llm_stream_chunk(source, event):
stream_event.append(event)
agent = Agent(
role="TestAgent",
llm=LLM(model="gpt-4o-mini", stream=True),
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
)
task = Task(
description="Just say hi",
expected_output="hi",
llm=LLM(model="gpt-4o-mini", stream=True),
agent=agent
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert len(completed_event) == 1
assert len(failed_event) == 0
assert len(started_event) == 1
assert len(stream_event) == 12
all_events = completed_event + failed_event + started_event + stream_event
all_agent_roles = [event.agent_role for event in all_events]
all_agent_id = [event.agent_id for event in all_events]
all_task_id = [event.task_id for event in all_events]
all_task_name = [event.task_name for event in all_events]
# ensure all events have the agent + task props set
assert len(all_agent_roles) == 14
assert len(all_agent_id) == 14
assert len(all_task_id) == 14
assert len(all_task_name) == 14
assert set(all_agent_roles) == {agent.role}
assert set(all_agent_id) == {agent.id}
assert set(all_task_id) == {task.id}
assert set(all_task_name) == {task.name}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_event_with_task_and_agent_info(base_agent, base_task):
completed_event = []
failed_event = []
started_event = []
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@crewai_event_bus.on(LLMCallStartedEvent)
def handle_llm_started(source, event):
started_event.append(event)
@crewai_event_bus.on(LLMCallCompletedEvent)
def handle_llm_completed(source, event):
completed_event.append(event)
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_llm_stream_chunk(source, event):
stream_event.append(event)
crew = Crew(agents=[base_agent], tasks=[base_task])
crew.kickoff()
assert len(completed_event) == 1
assert len(failed_event) == 0
assert len(started_event) == 1
assert len(stream_event) == 0
all_events = completed_event + failed_event + started_event + stream_event
all_agent_roles = [event.agent_role for event in all_events]
all_agent_id = [event.agent_id for event in all_events]
all_task_id = [event.task_id for event in all_events]
all_task_name = [event.task_name for event in all_events]
# ensure all events have the agent + task props set
assert len(all_agent_roles) == 2
assert len(all_agent_id) == 2
assert len(all_task_id) == 2
assert len(all_task_name) == 2
assert set(all_agent_roles) == {base_agent.role}
assert set(all_agent_id) == {base_agent.id}
assert set(all_task_id) == {base_task.id}
assert set(all_task_name) == {base_task.name}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_event_with_lite_agent():
completed_event = []
failed_event = []
started_event = []
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@crewai_event_bus.on(LLMCallStartedEvent)
def handle_llm_started(source, event):
started_event.append(event)
@crewai_event_bus.on(LLMCallCompletedEvent)
def handle_llm_completed(source, event):
completed_event.append(event)
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_llm_stream_chunk(source, event):
stream_event.append(event)
agent = Agent(
role="Speaker",
llm=LLM(model="gpt-4o-mini", stream=True),
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
)
agent.kickoff(messages=[{"role": "user", "content": "say hi!"}])
assert len(completed_event) == 2
assert len(failed_event) == 0
assert len(started_event) == 2
assert len(stream_event) == 15
all_events = completed_event + failed_event + started_event + stream_event
all_agent_roles = [event.agent_role for event in all_events]
all_agent_id = [event.agent_id for event in all_events]
all_task_id = [event.task_id for event in all_events if event.task_id]
all_task_name = [event.task_name for event in all_events if event.task_name]
# ensure all events have the agent + task props set
assert len(all_agent_roles) == 19
assert len(all_agent_id) == 19
assert len(all_task_id) == 0
assert len(all_task_name) == 0
assert set(all_agent_roles) == {agent.role}
assert set(all_agent_id) == {agent.id}