mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 17:18:29 +00:00
Bugfix/kickoff for each usage metrics (#844)
* WIP. Figuring out disconnect issue. * Cleaned up logs now that I've isolated the issue to the LLM * more wip. * WIP. It looks like usage metrics has always been broken for async * Update parent crew who is managing for_each loop * Merge in main to bugfix/kickoff-for-each-usage-metrics * Clean up code for review * Add new tests * Final cleanup. Ready for review. * Moving copy functionality from Agent to BaseAgent * Fix renaming issue * Fix linting errors * use BaseAgent instead of Agent where applicable
This commit is contained in:
committed by
GitHub
parent
706f4cd74a
commit
57fc079267
@@ -7,16 +7,15 @@ from langchain.tools.render import render_text_description
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from pydantic import Field, InstanceOf, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Prompts, Converter
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
@@ -91,7 +90,6 @@ class Agent(BaseAgent):
|
||||
response_template: Optional[str] = Field(
|
||||
default=None, description="Response format for the agent."
|
||||
)
|
||||
|
||||
allow_code_execution: Optional[bool] = Field(
|
||||
default=False, description="Enable code execution for the agent."
|
||||
)
|
||||
@@ -103,7 +101,7 @@ class Agent(BaseAgent):
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""Ensure agent executor and token process is set."""
|
||||
"""Ensure agent executor and token process are set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
|
||||
|
||||
@@ -1,23 +1,26 @@
|
||||
from copy import deepcopy
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
from abc import ABC, abstractmethod
|
||||
from copy import copy as shallow_copy
|
||||
from typing import Any, Dict, List, Optional, TypeVar
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
PrivateAttr,
|
||||
field_validator,
|
||||
model_validator,
|
||||
ConfigDict,
|
||||
PrivateAttr,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.utilities import I18N, RPMController, Logger
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities.token_counter_callback import TokenProcess
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
|
||||
class BaseAgent(ABC, BaseModel):
|
||||
@@ -188,6 +191,31 @@ class BaseAgent(ABC, BaseModel):
|
||||
"""Get the converter class for the agent to create json/pydantic outputs."""
|
||||
pass
|
||||
|
||||
def copy(self: T) -> T:
|
||||
"""Create a deep copy of the Agent."""
|
||||
exclude = {
|
||||
"id",
|
||||
"_logger",
|
||||
"_rpm_controller",
|
||||
"_request_within_rpm_limit",
|
||||
"_token_process",
|
||||
"agent_executor",
|
||||
"tools",
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
"llm",
|
||||
}
|
||||
|
||||
# Copy llm and clear callbacks
|
||||
existing_llm = shallow_copy(self.llm)
|
||||
existing_llm.callbacks = []
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
|
||||
|
||||
return copied_agent
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the agent description and backstory."""
|
||||
if self._original_role is None:
|
||||
@@ -217,35 +245,6 @@ class BaseAgent(ABC, BaseModel):
|
||||
def increment_formatting_errors(self) -> None:
|
||||
self.formatting_errors += 1
|
||||
|
||||
def copy(self):
|
||||
exclude = {
|
||||
"id",
|
||||
"_logger",
|
||||
"_rpm_controller",
|
||||
"_request_within_rpm_limit",
|
||||
"token_process",
|
||||
"agent_executor",
|
||||
"tools",
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
"crew",
|
||||
"llm",
|
||||
}
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude, exclude_unset=True)
|
||||
copied_agent = self.__class__(**copied_data)
|
||||
|
||||
# Copy mutable attributes separately
|
||||
copied_agent.tools = deepcopy(self.tools)
|
||||
copied_agent.config = deepcopy(self.config)
|
||||
|
||||
# Preserve original values for interpolation
|
||||
copied_agent._original_role = self._original_role
|
||||
copied_agent._original_goal = self._original_goal
|
||||
copied_agent._original_backstory = self._original_backstory
|
||||
|
||||
return copied_agent
|
||||
|
||||
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
|
||||
"""Set the rpm controller for the agent.
|
||||
|
||||
|
||||
@@ -299,16 +299,13 @@ class Crew(BaseModel):
|
||||
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
|
||||
agent.crew = self # type: ignore[attr-defined]
|
||||
# TODO: Create an AgentFunctionCalling protocol for future refactoring
|
||||
if (
|
||||
hasattr(agent, "function_calling_llm")
|
||||
and not agent.function_calling_llm
|
||||
):
|
||||
if not agent.function_calling_llm:
|
||||
agent.function_calling_llm = self.function_calling_llm
|
||||
|
||||
if hasattr(agent, "allow_code_execution") and agent.allow_code_execution:
|
||||
if agent.allow_code_execution:
|
||||
agent.tools += agent.get_code_execution_tools()
|
||||
|
||||
if hasattr(agent, "step_callback") and not agent.step_callback:
|
||||
if not agent.step_callback:
|
||||
agent.step_callback = self.step_callback
|
||||
|
||||
agent.create_agent_executor()
|
||||
@@ -326,9 +323,7 @@ class Crew(BaseModel):
|
||||
raise NotImplementedError(
|
||||
f"The process '{self.process}' is not implemented yet."
|
||||
)
|
||||
metrics = metrics + [
|
||||
agent._token_process.get_summary() for agent in self.agents
|
||||
]
|
||||
metrics += [agent._token_process.get_summary() for agent in self.agents]
|
||||
|
||||
self.usage_metrics = {
|
||||
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
|
||||
@@ -336,21 +331,32 @@ class Crew(BaseModel):
|
||||
|
||||
return result
|
||||
|
||||
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List:
|
||||
def kickoff_for_each(
|
||||
self, inputs: List[Dict[str, Any]]
|
||||
) -> List[Union[str, Dict[str, Any]]]:
|
||||
"""Executes the Crew's workflow for each input in the list and aggregates results."""
|
||||
results = []
|
||||
|
||||
# Initialize the parent crew's usage metrics
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
|
||||
for input_data in inputs:
|
||||
crew = self.copy()
|
||||
|
||||
for task in crew.tasks:
|
||||
task.interpolate_inputs(input_data)
|
||||
for agent in crew.agents:
|
||||
agent.interpolate_inputs(input_data)
|
||||
output = crew.kickoff(inputs=input_data)
|
||||
|
||||
if crew.usage_metrics:
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
|
||||
|
||||
output = crew.kickoff()
|
||||
results.append(output)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
return results
|
||||
|
||||
async def kickoff_async(
|
||||
@@ -360,26 +366,37 @@ class Crew(BaseModel):
|
||||
return await asyncio.to_thread(self.kickoff, inputs)
|
||||
|
||||
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[Any]:
|
||||
async def run_crew(input_data):
|
||||
crew = self.copy()
|
||||
crew_copies = [self.copy() for _ in inputs]
|
||||
|
||||
for task in crew.tasks:
|
||||
task.interpolate_inputs(input_data)
|
||||
for agent in crew.agents:
|
||||
agent.interpolate_inputs(input_data)
|
||||
async def run_crew(crew, input_data):
|
||||
return await crew.kickoff_async(inputs=input_data)
|
||||
|
||||
return await crew.kickoff_async()
|
||||
|
||||
tasks = [asyncio.create_task(run_crew(input_data)) for input_data in inputs]
|
||||
tasks = [
|
||||
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
|
||||
for i in range(len(inputs))
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
for crew in crew_copies:
|
||||
if crew.usage_metrics:
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
|
||||
return results
|
||||
|
||||
def _run_sequential_process(self) -> str:
|
||||
"""Executes tasks sequentially and returns the final output."""
|
||||
task_output = ""
|
||||
token_usage = []
|
||||
|
||||
for task in self.tasks:
|
||||
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
|
||||
agents_for_delegation = [
|
||||
@@ -405,18 +422,16 @@ class Crew(BaseModel):
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
|
||||
token_summ = task.agent._token_process.get_summary()
|
||||
|
||||
token_usage.append(token_summ)
|
||||
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=task_output, status="completed")
|
||||
|
||||
token_usage_formatted = self.aggregate_token_usage(token_usage)
|
||||
self._finish_execution(task_output)
|
||||
|
||||
token_usage = self.calculate_usage_metrics()
|
||||
|
||||
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
|
||||
return self._format_output(task_output, token_usage_formatted)
|
||||
return self._format_output(task_output, token_usage)
|
||||
|
||||
def _run_hierarchical_process(self) -> Union[str, Dict[str, Any]]:
|
||||
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
|
||||
@@ -437,9 +452,10 @@ class Crew(BaseModel):
|
||||
llm=self.manager_llm,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
self.manager_agent = manager
|
||||
|
||||
task_output = ""
|
||||
token_usage = []
|
||||
|
||||
for task in self.tasks:
|
||||
self._logger.log("debug", f"Working Agent: {manager.role}")
|
||||
self._logger.log("info", f"Starting Task: {task.description}")
|
||||
@@ -454,9 +470,6 @@ class Crew(BaseModel):
|
||||
)
|
||||
|
||||
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
|
||||
if hasattr(task, "agent._token_process"):
|
||||
token_summ = task.agent._token_process.get_summary()
|
||||
token_usage.append(token_summ)
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(
|
||||
agent=manager.role, task=task_output, status="completed"
|
||||
@@ -465,13 +478,9 @@ class Crew(BaseModel):
|
||||
self._finish_execution(task_output)
|
||||
|
||||
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
|
||||
manager_token_usage = manager._token_process.get_summary()
|
||||
token_usage.append(manager_token_usage)
|
||||
token_usage_formatted = self.aggregate_token_usage(token_usage)
|
||||
token_usage = self.calculate_usage_metrics()
|
||||
|
||||
return self._format_output(
|
||||
task_output, token_usage_formatted
|
||||
), manager_token_usage
|
||||
return self._format_output(task_output, token_usage), token_usage
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Crew."""
|
||||
@@ -486,12 +495,13 @@ class Crew(BaseModel):
|
||||
"_short_term_memory",
|
||||
"_long_term_memory",
|
||||
"_entity_memory",
|
||||
"_telemetry",
|
||||
"agents",
|
||||
"tasks",
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
cloned_tasks = [task.copy() for task in self.tasks]
|
||||
cloned_tasks = [task.copy(cloned_agents) for task in self.tasks]
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
@@ -529,6 +539,7 @@ class Crew(BaseModel):
|
||||
Formats the output of the crew execution.
|
||||
If full_output is True, then returned data type will be a dictionary else returned outputs are string
|
||||
"""
|
||||
|
||||
if self.full_output:
|
||||
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
|
||||
"final_output": output,
|
||||
@@ -547,11 +558,27 @@ class Crew(BaseModel):
|
||||
)
|
||||
self._telemetry.end_crew(self, output)
|
||||
|
||||
def calculate_usage_metrics(self) -> Dict[str, int]:
|
||||
"""Calculates and returns the usage metrics."""
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
|
||||
for agent in self.agents:
|
||||
if hasattr(agent, "_token_process"):
|
||||
token_sum = agent._token_process.get_summary()
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += token_sum.get(key, 0)
|
||||
|
||||
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
|
||||
token_sum = self.manager_agent._token_process.get_summary()
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += token_sum.get(key, 0)
|
||||
|
||||
return total_usage_metrics
|
||||
|
||||
def __repr__(self):
|
||||
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|
||||
|
||||
def aggregate_token_usage(self, token_usage_list: List[Dict[str, Any]]):
|
||||
return {
|
||||
key: sum([m[key] for m in token_usage_list if m is not None])
|
||||
for key in token_usage_list[0]
|
||||
}
|
||||
|
||||
@@ -2,8 +2,8 @@ import os
|
||||
import re
|
||||
import threading
|
||||
import uuid
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
from copy import copy
|
||||
from typing import Any, Dict, List, Optional, Type, Union
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from opentelemetry.trace import Span
|
||||
@@ -13,7 +13,9 @@ from pydantic_core import PydanticCustomError
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
from crewai.utilities import I18N, ConverterError, Printer
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.i18n import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
|
||||
@@ -216,7 +218,7 @@ class Task(BaseModel):
|
||||
)
|
||||
return result
|
||||
|
||||
def _execute(self, agent, task, context, tools):
|
||||
def _execute(self, agent: "BaseAgent", task, context, tools):
|
||||
result = agent.execute_task(
|
||||
task=task,
|
||||
context=context,
|
||||
@@ -274,7 +276,7 @@ class Task(BaseModel):
|
||||
"""Increment the delegations counter."""
|
||||
self.delegations += 1
|
||||
|
||||
def copy(self):
|
||||
def copy(self, agents: Optional[List["BaseAgent"]] = None) -> "Task":
|
||||
"""Create a deep copy of the Task."""
|
||||
exclude = {
|
||||
"id",
|
||||
@@ -289,8 +291,12 @@ class Task(BaseModel):
|
||||
cloned_context = (
|
||||
[task.copy() for task in self.context] if self.context else None
|
||||
)
|
||||
cloned_agent = self.agent.copy() if self.agent else None
|
||||
cloned_tools = deepcopy(self.tools) if self.tools else []
|
||||
|
||||
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
|
||||
return next((agent for agent in agents if agent.role == role), None)
|
||||
|
||||
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
|
||||
cloned_tools = copy(self.tools) if self.tools else []
|
||||
|
||||
copied_task = Task(
|
||||
**copied_data,
|
||||
@@ -298,6 +304,7 @@ class Task(BaseModel):
|
||||
agent=cloned_agent,
|
||||
tools=cloned_tools,
|
||||
)
|
||||
|
||||
return copied_task
|
||||
|
||||
def _export_output(self, result: str) -> Any:
|
||||
@@ -329,7 +336,7 @@ class Task(BaseModel):
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
|
||||
# type: ignore # Item "None" of "BaseAgent | None" has no attribute "function_calling_llm"
|
||||
llm = getattr(self.agent, "function_calling_llm", None) or self.agent.llm
|
||||
if not self._is_gpt(llm):
|
||||
# type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
|
||||
@@ -355,7 +362,9 @@ class Task(BaseModel):
|
||||
if self.output_file:
|
||||
content = (
|
||||
# type: ignore # "str" has no attribute "json"
|
||||
exported_result if not self.output_pydantic else exported_result.json()
|
||||
exported_result
|
||||
if not self.output_pydantic
|
||||
else exported_result.model_dump_json()
|
||||
)
|
||||
self._save_file(content)
|
||||
|
||||
|
||||
@@ -8,18 +8,18 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
|
||||
|
||||
|
||||
class TokenCalcHandler(BaseCallbackHandler):
|
||||
model: str = ""
|
||||
model_name: str = ""
|
||||
token_cost_process: TokenProcess
|
||||
|
||||
def __init__(self, model, token_cost_process):
|
||||
self.model = model
|
||||
def __init__(self, model_name, token_cost_process):
|
||||
self.model_name = model_name
|
||||
self.token_cost_process = token_cost_process
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(self.model)
|
||||
encoding = tiktoken.encoding_for_model(self.model_name)
|
||||
except KeyError:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user