Updated the main example in README.md (#61)

Update Example to mention local LLMs
This commit is contained in:
Chris Bruner
2024-01-05 22:34:28 -05:00
committed by GitHub
parent 6e086fe574
commit 52d404a267

View File

@@ -44,12 +44,20 @@ pip install duckduckgo-search
import os import os
from crewai import Agent, Task, Crew, Process from crewai import Agent, Task, Crew, Process
# You can choose to use a local model through Ollama for example.
# In this case we will use OpenHermes 2.5 as an example.
#
# from langchain.llms import Ollama
# ollama_llm = Ollama(model="openhermes")
# If you are using an ollama like above you don't need to set OPENAI_API_KEY.
os.environ["OPENAI_API_KEY"] = "Your Key" os.environ["OPENAI_API_KEY"] = "Your Key"
# Define your tools, custom or not. # Define your tools, custom or not.
# Install duckduckgo-search for this example: # Install duckduckgo-search for this example:
# #
# !pip install -U duckduckgo-search # !pip install -U duckduckgo-search
from langchain.tools import DuckDuckGoSearchRun from langchain.tools import DuckDuckGoSearchRun
search_tool = DuckDuckGoSearchRun() search_tool = DuckDuckGoSearchRun()
@@ -64,7 +72,8 @@ researcher = Agent(
verbose=True, verbose=True,
allow_delegation=False, allow_delegation=False,
tools=[search_tool] tools=[search_tool]
# llm=OpenAI(temperature=0.7, model_name="gpt-4"). It uses langchain.chat_models, default is GPT4 # (optional) llm=ollama_llm, If you wanna use a local modal through Ollama, default is GPT4 with temperature=0.7
) )
writer = Agent( writer = Agent(
role='Tech Content Strategist', role='Tech Content Strategist',
@@ -73,6 +82,7 @@ writer = Agent(
and engaging articles on technology and innovation. With a deep understanding of and engaging articles on technology and innovation. With a deep understanding of
the tech industry, you transform complex concepts into compelling narratives.""", the tech industry, you transform complex concepts into compelling narratives.""",
verbose=True, verbose=True,
# (optional) llm=ollama_llm, If you wanna use a local modal through Ollama, default is GPT4 with temperature=0.7
allow_delegation=True allow_delegation=True
) )