mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
Lorenze/feat hooks (#3902)
* feat: implement LLM call hooks and enhance agent execution context - Introduced LLM call hooks to allow modification of messages and responses during LLM interactions. - Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow. - Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications. - Added validation for hook callables to ensure proper functionality. - Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities. - Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes. * feat: implement LLM call hooks and enhance agent execution context - Introduced LLM call hooks to allow modification of messages and responses during LLM interactions. - Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow. - Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications. - Added validation for hook callables to ensure proper functionality. - Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities. - Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes. * fix verbose * feat: introduce crew-scoped hook decorators and refactor hook registration - Added decorators for before and after LLM and tool calls to enhance flexibility in modifying execution behavior. - Implemented a centralized hook registration mechanism within CrewBase to automatically register crew-scoped hooks. - Removed the obsolete base.py file as its functionality has been integrated into the new decorators and registration system. - Enhanced tests for the new hook decorators to ensure proper registration and execution flow. - Updated existing hook handling to accommodate the new decorator-based approach, improving code organization and maintainability. * feat: enhance hook management with clear and unregister functions - Introduced functions to unregister specific before and after hooks for both LLM and tool calls, improving flexibility in hook management. - Added clear functions to remove all registered hooks of each type, facilitating easier state management and cleanup. - Implemented a convenience function to clear all global hooks in one call, streamlining the process for testing and execution context resets. - Enhanced tests to verify the functionality of unregistering and clearing hooks, ensuring robust behavior in various scenarios. * refactor: enhance hook type management for LLM and tool hooks - Updated hook type definitions to use generic protocols for better type safety and flexibility. - Replaced Callable type annotations with specific BeforeLLMCallHookType and AfterLLMCallHookType for clarity. - Improved the registration and retrieval functions for before and after hooks to align with the new type definitions. - Enhanced the setup functions to handle hook execution results, allowing for blocking of LLM calls based on hook logic. - Updated related tests to ensure proper functionality and type adherence across the hook management system. * feat: add execution and tool hooks documentation - Introduced new documentation for execution hooks, LLM call hooks, and tool call hooks to provide comprehensive guidance on their usage and implementation in CrewAI. - Updated existing documentation to include references to the new hooks, enhancing the learning resources available for users. - Ensured consistency across multiple languages (English, Portuguese, Korean) for the new documentation, improving accessibility for a wider audience. - Added examples and troubleshooting sections to assist users in effectively utilizing hooks for agent operations. --------- Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
This commit is contained in:
379
docs/pt-BR/learn/execution-hooks.mdx
Normal file
379
docs/pt-BR/learn/execution-hooks.mdx
Normal file
@@ -0,0 +1,379 @@
|
||||
---
|
||||
title: Visão Geral dos Hooks de Execução
|
||||
description: Entendendo e usando hooks de execução no CrewAI para controle fino sobre operações de agentes
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Os Hooks de Execução fornecem controle fino sobre o comportamento em tempo de execução dos seus agentes CrewAI. Diferentemente dos hooks de kickoff que são executados antes e depois da execução da crew, os hooks de execução interceptam operações específicas durante a execução do agente, permitindo que você modifique comportamentos, implemente verificações de segurança e adicione monitoramento abrangente.
|
||||
|
||||
## Tipos de Hooks de Execução
|
||||
|
||||
O CrewAI fornece duas categorias principais de hooks de execução:
|
||||
|
||||
### 1. [Hooks de Chamada LLM](/learn/llm-hooks)
|
||||
|
||||
Controle e monitore interações com o modelo de linguagem:
|
||||
- **Antes da Chamada LLM**: Modifique prompts, valide entradas, implemente gates de aprovação
|
||||
- **Depois da Chamada LLM**: Transforme respostas, sanitize saídas, atualize histórico de conversação
|
||||
|
||||
**Casos de Uso:**
|
||||
- Limitação de iterações
|
||||
- Rastreamento de custos e monitoramento de uso de tokens
|
||||
- Sanitização de respostas e filtragem de conteúdo
|
||||
- Aprovação humana para chamadas LLM
|
||||
- Adição de diretrizes de segurança ou contexto
|
||||
- Logging de debug e inspeção de requisição/resposta
|
||||
|
||||
[Ver Documentação de Hooks LLM →](/learn/llm-hooks)
|
||||
|
||||
### 2. [Hooks de Chamada de Ferramenta](/learn/tool-hooks)
|
||||
|
||||
Controle e monitore execução de ferramentas:
|
||||
- **Antes da Chamada de Ferramenta**: Modifique entradas, valide parâmetros, bloqueie operações perigosas
|
||||
- **Depois da Chamada de Ferramenta**: Transforme resultados, sanitize saídas, registre detalhes de execução
|
||||
|
||||
**Casos de Uso:**
|
||||
- Guardrails de segurança para operações destrutivas
|
||||
- Aprovação humana para ações sensíveis
|
||||
- Validação e sanitização de entrada
|
||||
- Cache de resultados e limitação de taxa
|
||||
- Análise de uso de ferramentas
|
||||
- Logging de debug e monitoramento
|
||||
|
||||
[Ver Documentação de Hooks de Ferramenta →](/learn/tool-hooks)
|
||||
|
||||
## Métodos de Registro
|
||||
|
||||
### 1. Hooks Baseados em Decoradores (Recomendado)
|
||||
|
||||
A maneira mais limpa e pythônica de registrar hooks:
|
||||
|
||||
```python
|
||||
from crewai.hooks import before_llm_call, after_llm_call, before_tool_call, after_tool_call
|
||||
|
||||
@before_llm_call
|
||||
def limit_iterations(context):
|
||||
"""Previne loops infinitos limitando iterações."""
|
||||
if context.iterations > 10:
|
||||
return False # Bloquear execução
|
||||
return None
|
||||
|
||||
@after_llm_call
|
||||
def sanitize_response(context):
|
||||
"""Remove dados sensíveis das respostas do LLM."""
|
||||
if "API_KEY" in context.response:
|
||||
return context.response.replace("API_KEY", "[CENSURADO]")
|
||||
return None
|
||||
|
||||
@before_tool_call
|
||||
def block_dangerous_tools(context):
|
||||
"""Bloqueia operações destrutivas."""
|
||||
if context.tool_name == "delete_database":
|
||||
return False # Bloquear execução
|
||||
return None
|
||||
|
||||
@after_tool_call
|
||||
def log_tool_result(context):
|
||||
"""Registra execução de ferramenta."""
|
||||
print(f"Ferramenta {context.tool_name} concluída")
|
||||
return None
|
||||
```
|
||||
|
||||
### 2. Hooks com Escopo de Crew
|
||||
|
||||
Aplica hooks apenas a instâncias específicas de crew:
|
||||
|
||||
```python
|
||||
from crewai import CrewBase
|
||||
from crewai.project import crew
|
||||
from crewai.hooks import before_llm_call_crew, after_tool_call_crew
|
||||
|
||||
@CrewBase
|
||||
class MyProjCrew:
|
||||
@before_llm_call_crew
|
||||
def validate_inputs(self, context):
|
||||
# Aplica-se apenas a esta crew
|
||||
print(f"Chamada LLM em {self.__class__.__name__}")
|
||||
return None
|
||||
|
||||
@after_tool_call_crew
|
||||
def log_results(self, context):
|
||||
# Logging específico da crew
|
||||
print(f"Resultado da ferramenta: {context.tool_result[:50]}...")
|
||||
return None
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential
|
||||
)
|
||||
```
|
||||
|
||||
## Fluxo de Execução de Hooks
|
||||
|
||||
### Fluxo de Chamada LLM
|
||||
|
||||
```
|
||||
Agente precisa chamar LLM
|
||||
↓
|
||||
[Hooks Antes da Chamada LLM Executam]
|
||||
├→ Hook 1: Validar contagem de iterações
|
||||
├→ Hook 2: Adicionar contexto de segurança
|
||||
└→ Hook 3: Registrar requisição
|
||||
↓
|
||||
Se algum hook retornar False:
|
||||
├→ Bloquear chamada LLM
|
||||
└→ Lançar ValueError
|
||||
↓
|
||||
Se todos os hooks retornarem True/None:
|
||||
├→ Chamada LLM prossegue
|
||||
└→ Resposta gerada
|
||||
↓
|
||||
[Hooks Depois da Chamada LLM Executam]
|
||||
├→ Hook 1: Sanitizar resposta
|
||||
├→ Hook 2: Registrar resposta
|
||||
└→ Hook 3: Atualizar métricas
|
||||
↓
|
||||
Resposta final retornada
|
||||
```
|
||||
|
||||
### Fluxo de Chamada de Ferramenta
|
||||
|
||||
```
|
||||
Agente precisa executar ferramenta
|
||||
↓
|
||||
[Hooks Antes da Chamada de Ferramenta Executam]
|
||||
├→ Hook 1: Verificar se ferramenta é permitida
|
||||
├→ Hook 2: Validar entradas
|
||||
└→ Hook 3: Solicitar aprovação se necessário
|
||||
↓
|
||||
Se algum hook retornar False:
|
||||
├→ Bloquear execução da ferramenta
|
||||
└→ Retornar mensagem de erro
|
||||
↓
|
||||
Se todos os hooks retornarem True/None:
|
||||
├→ Execução da ferramenta prossegue
|
||||
└→ Resultado gerado
|
||||
↓
|
||||
[Hooks Depois da Chamada de Ferramenta Executam]
|
||||
├→ Hook 1: Sanitizar resultado
|
||||
├→ Hook 2: Fazer cache do resultado
|
||||
└→ Hook 3: Registrar métricas
|
||||
↓
|
||||
Resultado final retornado
|
||||
```
|
||||
|
||||
## Objetos de Contexto de Hook
|
||||
|
||||
### LLMCallHookContext
|
||||
|
||||
Fornece acesso ao estado de execução do LLM:
|
||||
|
||||
```python
|
||||
class LLMCallHookContext:
|
||||
executor: CrewAgentExecutor # Acesso completo ao executor
|
||||
messages: list # Lista de mensagens mutável
|
||||
agent: Agent # Agente atual
|
||||
task: Task # Tarefa atual
|
||||
crew: Crew # Instância da crew
|
||||
llm: BaseLLM # Instância do LLM
|
||||
iterations: int # Iteração atual
|
||||
response: str | None # Resposta do LLM (hooks posteriores)
|
||||
```
|
||||
|
||||
### ToolCallHookContext
|
||||
|
||||
Fornece acesso ao estado de execução da ferramenta:
|
||||
|
||||
```python
|
||||
class ToolCallHookContext:
|
||||
tool_name: str # Ferramenta sendo chamada
|
||||
tool_input: dict # Parâmetros de entrada mutáveis
|
||||
tool: CrewStructuredTool # Instância da ferramenta
|
||||
agent: Agent | None # Agente executando
|
||||
task: Task | None # Tarefa atual
|
||||
crew: Crew | None # Instância da crew
|
||||
tool_result: str | None # Resultado da ferramenta (hooks posteriores)
|
||||
```
|
||||
|
||||
## Padrões Comuns
|
||||
|
||||
### Segurança e Validação
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def safety_check(context):
|
||||
"""Bloqueia operações destrutivas."""
|
||||
dangerous = ['delete_file', 'drop_table', 'system_shutdown']
|
||||
if context.tool_name in dangerous:
|
||||
print(f"🛑 Bloqueado: {context.tool_name}")
|
||||
return False
|
||||
return None
|
||||
|
||||
@before_llm_call
|
||||
def iteration_limit(context):
|
||||
"""Previne loops infinitos."""
|
||||
if context.iterations > 15:
|
||||
print("⛔ Máximo de iterações excedido")
|
||||
return False
|
||||
return None
|
||||
```
|
||||
|
||||
### Humano no Loop
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def require_approval(context):
|
||||
"""Requer aprovação para operações sensíveis."""
|
||||
sensitive = ['send_email', 'make_payment', 'post_message']
|
||||
|
||||
if context.tool_name in sensitive:
|
||||
response = context.request_human_input(
|
||||
prompt=f"Aprovar {context.tool_name}?",
|
||||
default_message="Digite 'sim' para aprovar:"
|
||||
)
|
||||
|
||||
if response.lower() != 'sim':
|
||||
return False
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### Monitoramento e Análise
|
||||
|
||||
```python
|
||||
from collections import defaultdict
|
||||
import time
|
||||
|
||||
metrics = defaultdict(lambda: {'count': 0, 'total_time': 0})
|
||||
|
||||
@before_tool_call
|
||||
def start_timer(context):
|
||||
context.tool_input['_start'] = time.time()
|
||||
return None
|
||||
|
||||
@after_tool_call
|
||||
def track_metrics(context):
|
||||
start = context.tool_input.get('_start', time.time())
|
||||
duration = time.time() - start
|
||||
|
||||
metrics[context.tool_name]['count'] += 1
|
||||
metrics[context.tool_name]['total_time'] += duration
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
## Gerenciamento de Hooks
|
||||
|
||||
### Limpar Todos os Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import clear_all_global_hooks
|
||||
|
||||
# Limpa todos os hooks de uma vez
|
||||
result = clear_all_global_hooks()
|
||||
print(f"Limpou {result['total']} hooks")
|
||||
```
|
||||
|
||||
### Limpar Tipos Específicos de Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import (
|
||||
clear_before_llm_call_hooks,
|
||||
clear_after_llm_call_hooks,
|
||||
clear_before_tool_call_hooks,
|
||||
clear_after_tool_call_hooks
|
||||
)
|
||||
|
||||
# Limpar tipos específicos
|
||||
llm_before_count = clear_before_llm_call_hooks()
|
||||
tool_after_count = clear_after_tool_call_hooks()
|
||||
```
|
||||
|
||||
## Melhores Práticas
|
||||
|
||||
### 1. Mantenha os Hooks Focados
|
||||
Cada hook deve ter uma responsabilidade única e clara.
|
||||
|
||||
### 2. Trate Erros Graciosamente
|
||||
```python
|
||||
@before_llm_call
|
||||
def safe_hook(context):
|
||||
try:
|
||||
if some_condition:
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"Erro no hook: {e}")
|
||||
return None # Permitir execução apesar do erro
|
||||
```
|
||||
|
||||
### 3. Modifique o Contexto In-Place
|
||||
```python
|
||||
# ✅ Correto - modificar in-place
|
||||
@before_llm_call
|
||||
def add_context(context):
|
||||
context.messages.append({"role": "system", "content": "Seja conciso"})
|
||||
|
||||
# ❌ Errado - substitui referência
|
||||
@before_llm_call
|
||||
def wrong_approach(context):
|
||||
context.messages = [{"role": "system", "content": "Seja conciso"}]
|
||||
```
|
||||
|
||||
### 4. Use Type Hints
|
||||
```python
|
||||
from crewai.hooks import LLMCallHookContext, ToolCallHookContext
|
||||
|
||||
def my_llm_hook(context: LLMCallHookContext) -> bool | None:
|
||||
return None
|
||||
|
||||
def my_tool_hook(context: ToolCallHookContext) -> str | None:
|
||||
return None
|
||||
```
|
||||
|
||||
### 5. Limpe em Testes
|
||||
```python
|
||||
import pytest
|
||||
from crewai.hooks import clear_all_global_hooks
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def clean_hooks():
|
||||
"""Reseta hooks antes de cada teste."""
|
||||
yield
|
||||
clear_all_global_hooks()
|
||||
```
|
||||
|
||||
## Quando Usar Qual Hook
|
||||
|
||||
### Use Hooks LLM Quando:
|
||||
- Implementar limites de iteração
|
||||
- Adicionar contexto ou diretrizes de segurança aos prompts
|
||||
- Rastrear uso de tokens e custos
|
||||
- Sanitizar ou transformar respostas
|
||||
- Implementar gates de aprovação para chamadas LLM
|
||||
- Fazer debug de interações de prompt/resposta
|
||||
|
||||
### Use Hooks de Ferramenta Quando:
|
||||
- Bloquear operações perigosas ou destrutivas
|
||||
- Validar entradas de ferramenta antes da execução
|
||||
- Implementar gates de aprovação para ações sensíveis
|
||||
- Fazer cache de resultados de ferramenta
|
||||
- Rastrear uso e performance de ferramentas
|
||||
- Sanitizar saídas de ferramenta
|
||||
- Limitar taxa de chamadas de ferramenta
|
||||
|
||||
### Use Ambos Quando:
|
||||
Construir sistemas abrangentes de observabilidade, segurança ou aprovação que precisam monitorar todas as operações do agente.
|
||||
|
||||
## Documentação Relacionada
|
||||
|
||||
- [Hooks de Chamada LLM →](/learn/llm-hooks) - Documentação detalhada de hooks LLM
|
||||
- [Hooks de Chamada de Ferramenta →](/learn/tool-hooks) - Documentação detalhada de hooks de ferramenta
|
||||
- [Hooks Antes e Depois do Kickoff →](/learn/before-and-after-kickoff-hooks) - Hooks do ciclo de vida da crew
|
||||
- [Humano no Loop →](/learn/human-in-the-loop) - Padrões de entrada humana
|
||||
|
||||
## Conclusão
|
||||
|
||||
Os Hooks de Execução fornecem controle poderoso sobre o comportamento em tempo de execução do agente. Use-os para implementar guardrails de segurança, fluxos de trabalho de aprovação, monitoramento abrangente e lógica de negócio personalizada. Combinados com tratamento adequado de erros, segurança de tipos e considerações de performance, os hooks permitem sistemas de agentes seguros, prontos para produção e observáveis.
|
||||
388
docs/pt-BR/learn/llm-hooks.mdx
Normal file
388
docs/pt-BR/learn/llm-hooks.mdx
Normal file
@@ -0,0 +1,388 @@
|
||||
---
|
||||
title: Hooks de Chamada LLM
|
||||
description: Aprenda a usar hooks de chamada LLM para interceptar, modificar e controlar interações com modelos de linguagem no CrewAI
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Os Hooks de Chamada LLM fornecem controle fino sobre interações com modelos de linguagem durante a execução do agente. Esses hooks permitem interceptar chamadas LLM, modificar prompts, transformar respostas, implementar gates de aprovação e adicionar logging ou monitoramento personalizado.
|
||||
|
||||
## Visão Geral
|
||||
|
||||
Os hooks LLM são executados em dois pontos críticos:
|
||||
- **Antes da Chamada LLM**: Modificar mensagens, validar entradas ou bloquear execução
|
||||
- **Depois da Chamada LLM**: Transformar respostas, sanitizar saídas ou modificar histórico de conversação
|
||||
|
||||
## Tipos de Hook
|
||||
|
||||
### Hooks Antes da Chamada LLM
|
||||
|
||||
Executados antes de cada chamada LLM, esses hooks podem:
|
||||
- Inspecionar e modificar mensagens enviadas ao LLM
|
||||
- Bloquear execução LLM com base em condições
|
||||
- Implementar limitação de taxa ou gates de aprovação
|
||||
- Adicionar contexto ou mensagens do sistema
|
||||
- Registrar detalhes da requisição
|
||||
|
||||
**Assinatura:**
|
||||
```python
|
||||
def before_hook(context: LLMCallHookContext) -> bool | None:
|
||||
# Retorne False para bloquear execução
|
||||
# Retorne True ou None para permitir execução
|
||||
...
|
||||
```
|
||||
|
||||
### Hooks Depois da Chamada LLM
|
||||
|
||||
Executados depois de cada chamada LLM, esses hooks podem:
|
||||
- Modificar ou sanitizar respostas do LLM
|
||||
- Adicionar metadados ou formatação
|
||||
- Registrar detalhes da resposta
|
||||
- Atualizar histórico de conversação
|
||||
- Implementar filtragem de conteúdo
|
||||
|
||||
**Assinatura:**
|
||||
```python
|
||||
def after_hook(context: LLMCallHookContext) -> str | None:
|
||||
# Retorne string de resposta modificada
|
||||
# Retorne None para manter resposta original
|
||||
...
|
||||
```
|
||||
|
||||
## Contexto do Hook LLM
|
||||
|
||||
O objeto `LLMCallHookContext` fornece acesso abrangente ao estado de execução:
|
||||
|
||||
```python
|
||||
class LLMCallHookContext:
|
||||
executor: CrewAgentExecutor # Referência completa ao executor
|
||||
messages: list # Lista de mensagens mutável
|
||||
agent: Agent # Agente atual
|
||||
task: Task # Tarefa atual
|
||||
crew: Crew # Instância da crew
|
||||
llm: BaseLLM # Instância do LLM
|
||||
iterations: int # Contagem de iteração atual
|
||||
response: str | None # Resposta do LLM (apenas hooks posteriores)
|
||||
```
|
||||
|
||||
### Modificando Mensagens
|
||||
|
||||
**Importante:** Sempre modifique mensagens in-place:
|
||||
|
||||
```python
|
||||
# ✅ Correto - modificar in-place
|
||||
def add_context(context: LLMCallHookContext) -> None:
|
||||
context.messages.append({"role": "system", "content": "Seja conciso"})
|
||||
|
||||
# ❌ Errado - substitui referência da lista
|
||||
def wrong_approach(context: LLMCallHookContext) -> None:
|
||||
context.messages = [{"role": "system", "content": "Seja conciso"}]
|
||||
```
|
||||
|
||||
## Métodos de Registro
|
||||
|
||||
### 1. Registro Baseado em Decoradores (Recomendado)
|
||||
|
||||
Use decoradores para sintaxe mais limpa:
|
||||
|
||||
```python
|
||||
from crewai.hooks import before_llm_call, after_llm_call
|
||||
|
||||
@before_llm_call
|
||||
def validate_iteration_count(context):
|
||||
"""Valida a contagem de iterações."""
|
||||
if context.iterations > 10:
|
||||
print("⚠️ Máximo de iterações excedido")
|
||||
return False # Bloquear execução
|
||||
return None
|
||||
|
||||
@after_llm_call
|
||||
def sanitize_response(context):
|
||||
"""Remove dados sensíveis."""
|
||||
if context.response and "API_KEY" in context.response:
|
||||
return context.response.replace("API_KEY", "[CENSURADO]")
|
||||
return None
|
||||
```
|
||||
|
||||
### 2. Hooks com Escopo de Crew
|
||||
|
||||
Registre hooks para uma instância específica de crew:
|
||||
|
||||
```python
|
||||
from crewai import CrewBase
|
||||
from crewai.project import crew
|
||||
from crewai.hooks import before_llm_call_crew, after_llm_call_crew
|
||||
|
||||
@CrewBase
|
||||
class MyProjCrew:
|
||||
@before_llm_call_crew
|
||||
def validate_inputs(self, context):
|
||||
# Aplica-se apenas a esta crew
|
||||
if context.iterations == 0:
|
||||
print(f"Iniciando tarefa: {context.task.description}")
|
||||
return None
|
||||
|
||||
@after_llm_call_crew
|
||||
def log_responses(self, context):
|
||||
# Logging específico da crew
|
||||
print(f"Comprimento da resposta: {len(context.response)}")
|
||||
return None
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Casos de Uso Comuns
|
||||
|
||||
### 1. Limitação de Iterações
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def limit_iterations(context: LLMCallHookContext) -> bool | None:
|
||||
"""Previne loops infinitos limitando iterações."""
|
||||
max_iterations = 15
|
||||
if context.iterations > max_iterations:
|
||||
print(f"⛔ Bloqueado: Excedeu {max_iterations} iterações")
|
||||
return False # Bloquear execução
|
||||
return None
|
||||
```
|
||||
|
||||
### 2. Gate de Aprovação Humana
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def require_approval(context: LLMCallHookContext) -> bool | None:
|
||||
"""Requer aprovação após certas iterações."""
|
||||
if context.iterations > 5:
|
||||
response = context.request_human_input(
|
||||
prompt=f"Iteração {context.iterations}: Aprovar chamada LLM?",
|
||||
default_message="Pressione Enter para aprovar, ou digite 'não' para bloquear:"
|
||||
)
|
||||
if response.lower() == "não":
|
||||
print("🚫 Chamada LLM bloqueada pelo usuário")
|
||||
return False
|
||||
return None
|
||||
```
|
||||
|
||||
### 3. Adicionando Contexto do Sistema
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def add_guardrails(context: LLMCallHookContext) -> None:
|
||||
"""Adiciona diretrizes de segurança a cada chamada LLM."""
|
||||
context.messages.append({
|
||||
"role": "system",
|
||||
"content": "Garanta que as respostas sejam factuais e cite fontes quando possível."
|
||||
})
|
||||
return None
|
||||
```
|
||||
|
||||
### 4. Sanitização de Resposta
|
||||
|
||||
```python
|
||||
@after_llm_call
|
||||
def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None:
|
||||
"""Remove padrões sensíveis."""
|
||||
if not context.response:
|
||||
return None
|
||||
|
||||
import re
|
||||
sanitized = context.response
|
||||
sanitized = re.sub(r'\b\d{3}\.\d{3}\.\d{3}-\d{2}\b', '[CPF-CENSURADO]', sanitized)
|
||||
sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[CARTÃO-CENSURADO]', sanitized)
|
||||
|
||||
return sanitized
|
||||
```
|
||||
|
||||
### 5. Rastreamento de Custos
|
||||
|
||||
```python
|
||||
import tiktoken
|
||||
|
||||
@before_llm_call
|
||||
def track_token_usage(context: LLMCallHookContext) -> None:
|
||||
"""Rastreia tokens de entrada."""
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
total_tokens = sum(
|
||||
len(encoding.encode(msg.get("content", "")))
|
||||
for msg in context.messages
|
||||
)
|
||||
print(f"📊 Tokens de entrada: ~{total_tokens}")
|
||||
return None
|
||||
|
||||
@after_llm_call
|
||||
def track_response_tokens(context: LLMCallHookContext) -> None:
|
||||
"""Rastreia tokens de resposta."""
|
||||
if context.response:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
tokens = len(encoding.encode(context.response))
|
||||
print(f"📊 Tokens de resposta: ~{tokens}")
|
||||
return None
|
||||
```
|
||||
|
||||
### 6. Logging de Debug
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def debug_request(context: LLMCallHookContext) -> None:
|
||||
"""Debug de requisição LLM."""
|
||||
print(f"""
|
||||
🔍 Debug de Chamada LLM:
|
||||
- Agente: {context.agent.role}
|
||||
- Tarefa: {context.task.description[:50]}...
|
||||
- Iteração: {context.iterations}
|
||||
- Contagem de Mensagens: {len(context.messages)}
|
||||
- Última Mensagem: {context.messages[-1] if context.messages else 'Nenhuma'}
|
||||
""")
|
||||
return None
|
||||
|
||||
@after_llm_call
|
||||
def debug_response(context: LLMCallHookContext) -> None:
|
||||
"""Debug de resposta LLM."""
|
||||
if context.response:
|
||||
print(f"✅ Preview da Resposta: {context.response[:100]}...")
|
||||
return None
|
||||
```
|
||||
|
||||
## Gerenciamento de Hooks
|
||||
|
||||
### Desregistrando Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import (
|
||||
unregister_before_llm_call_hook,
|
||||
unregister_after_llm_call_hook
|
||||
)
|
||||
|
||||
# Desregistrar hook específico
|
||||
def my_hook(context):
|
||||
...
|
||||
|
||||
register_before_llm_call_hook(my_hook)
|
||||
# Mais tarde...
|
||||
unregister_before_llm_call_hook(my_hook) # Retorna True se encontrado
|
||||
```
|
||||
|
||||
### Limpando Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import (
|
||||
clear_before_llm_call_hooks,
|
||||
clear_after_llm_call_hooks,
|
||||
clear_all_llm_call_hooks
|
||||
)
|
||||
|
||||
# Limpar tipo específico de hook
|
||||
count = clear_before_llm_call_hooks()
|
||||
print(f"Limpou {count} hooks antes")
|
||||
|
||||
# Limpar todos os hooks LLM
|
||||
before_count, after_count = clear_all_llm_call_hooks()
|
||||
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
|
||||
```
|
||||
|
||||
## Padrões Avançados
|
||||
|
||||
### Execução Condicional de Hook
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def conditional_blocking(context: LLMCallHookContext) -> bool | None:
|
||||
"""Bloqueia apenas em condições específicas."""
|
||||
# Bloquear apenas para agentes específicos
|
||||
if context.agent.role == "researcher" and context.iterations > 10:
|
||||
return False
|
||||
|
||||
# Bloquear apenas para tarefas específicas
|
||||
if "sensível" in context.task.description.lower() and context.iterations > 5:
|
||||
return False
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### Modificações com Consciência de Contexto
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def adaptive_prompting(context: LLMCallHookContext) -> None:
|
||||
"""Adiciona contexto diferente baseado na iteração."""
|
||||
if context.iterations == 0:
|
||||
context.messages.append({
|
||||
"role": "system",
|
||||
"content": "Comece com uma visão geral de alto nível."
|
||||
})
|
||||
elif context.iterations > 3:
|
||||
context.messages.append({
|
||||
"role": "system",
|
||||
"content": "Foque em detalhes específicos e forneça exemplos."
|
||||
})
|
||||
return None
|
||||
```
|
||||
|
||||
## Melhores Práticas
|
||||
|
||||
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
|
||||
2. **Evite Computação Pesada**: Hooks executam em cada chamada LLM
|
||||
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
|
||||
4. **Use Type Hints**: Aproveite `LLMCallHookContext` para melhor suporte IDE
|
||||
5. **Documente Comportamento do Hook**: Especialmente para condições de bloqueio
|
||||
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
|
||||
7. **Limpe Hooks em Testes**: Use `clear_all_llm_call_hooks()` entre execuções de teste
|
||||
8. **Modifique In-Place**: Sempre modifique `context.messages` in-place, nunca substitua
|
||||
|
||||
## Tratamento de Erros
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def safe_hook(context: LLMCallHookContext) -> bool | None:
|
||||
try:
|
||||
# Sua lógica de hook
|
||||
if some_condition:
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"⚠️ Erro no hook: {e}")
|
||||
# Decida: permitir ou bloquear em erro
|
||||
return None # Permitir execução apesar do erro
|
||||
```
|
||||
|
||||
## Segurança de Tipos
|
||||
|
||||
```python
|
||||
from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType
|
||||
|
||||
# Anotações de tipo explícitas
|
||||
def my_before_hook(context: LLMCallHookContext) -> bool | None:
|
||||
return None
|
||||
|
||||
def my_after_hook(context: LLMCallHookContext) -> str | None:
|
||||
return None
|
||||
|
||||
# Registro type-safe
|
||||
register_before_llm_call_hook(my_before_hook)
|
||||
register_after_llm_call_hook(my_after_hook)
|
||||
```
|
||||
|
||||
## Solução de Problemas
|
||||
|
||||
### Hook Não Está Executando
|
||||
- Verifique se o hook está registrado antes da execução da crew
|
||||
- Verifique se hook anterior retornou `False` (bloqueia hooks subsequentes)
|
||||
- Garanta que assinatura do hook corresponda ao tipo esperado
|
||||
|
||||
### Modificações de Mensagem Não Persistem
|
||||
- Use modificações in-place: `context.messages.append()`
|
||||
- Não substitua a lista: `context.messages = []`
|
||||
|
||||
### Modificações de Resposta Não Funcionam
|
||||
- Retorne a string modificada dos hooks posteriores
|
||||
- Retornar `None` mantém a resposta original
|
||||
|
||||
## Conclusão
|
||||
|
||||
Os Hooks de Chamada LLM fornecem capacidades poderosas para controlar e monitorar interações com modelos de linguagem no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, logging, rastreamento de custos e sanitização de respostas. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes robustos e prontos para produção.
|
||||
|
||||
498
docs/pt-BR/learn/tool-hooks.mdx
Normal file
498
docs/pt-BR/learn/tool-hooks.mdx
Normal file
@@ -0,0 +1,498 @@
|
||||
---
|
||||
title: Hooks de Chamada de Ferramenta
|
||||
description: Aprenda a usar hooks de chamada de ferramenta para interceptar, modificar e controlar execução de ferramentas no CrewAI
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Os Hooks de Chamada de Ferramenta fornecem controle fino sobre a execução de ferramentas durante operações do agente. Esses hooks permitem interceptar chamadas de ferramenta, modificar entradas, transformar saídas, implementar verificações de segurança e adicionar logging ou monitoramento abrangente.
|
||||
|
||||
## Visão Geral
|
||||
|
||||
Os hooks de ferramenta são executados em dois pontos críticos:
|
||||
- **Antes da Chamada de Ferramenta**: Modificar entradas, validar parâmetros ou bloquear execução
|
||||
- **Depois da Chamada de Ferramenta**: Transformar resultados, sanitizar saídas ou registrar detalhes de execução
|
||||
|
||||
## Tipos de Hook
|
||||
|
||||
### Hooks Antes da Chamada de Ferramenta
|
||||
|
||||
Executados antes de cada execução de ferramenta, esses hooks podem:
|
||||
- Inspecionar e modificar entradas de ferramenta
|
||||
- Bloquear execução de ferramenta com base em condições
|
||||
- Implementar gates de aprovação para operações perigosas
|
||||
- Validar parâmetros
|
||||
- Registrar invocações de ferramenta
|
||||
|
||||
**Assinatura:**
|
||||
```python
|
||||
def before_hook(context: ToolCallHookContext) -> bool | None:
|
||||
# Retorne False para bloquear execução
|
||||
# Retorne True ou None para permitir execução
|
||||
...
|
||||
```
|
||||
|
||||
### Hooks Depois da Chamada de Ferramenta
|
||||
|
||||
Executados depois de cada execução de ferramenta, esses hooks podem:
|
||||
- Modificar ou sanitizar resultados de ferramenta
|
||||
- Adicionar metadados ou formatação
|
||||
- Registrar resultados de execução
|
||||
- Implementar validação de resultado
|
||||
- Transformar formatos de saída
|
||||
|
||||
**Assinatura:**
|
||||
```python
|
||||
def after_hook(context: ToolCallHookContext) -> str | None:
|
||||
# Retorne string de resultado modificado
|
||||
# Retorne None para manter resultado original
|
||||
...
|
||||
```
|
||||
|
||||
## Contexto do Hook de Ferramenta
|
||||
|
||||
O objeto `ToolCallHookContext` fornece acesso abrangente ao estado de execução da ferramenta:
|
||||
|
||||
```python
|
||||
class ToolCallHookContext:
|
||||
tool_name: str # Nome da ferramenta sendo chamada
|
||||
tool_input: dict[str, Any] # Parâmetros de entrada mutáveis da ferramenta
|
||||
tool: CrewStructuredTool # Referência da instância da ferramenta
|
||||
agent: Agent | BaseAgent | None # Agente executando a ferramenta
|
||||
task: Task | None # Tarefa atual
|
||||
crew: Crew | None # Instância da crew
|
||||
tool_result: str | None # Resultado da ferramenta (apenas hooks posteriores)
|
||||
```
|
||||
|
||||
### Modificando Entradas de Ferramenta
|
||||
|
||||
**Importante:** Sempre modifique entradas de ferramenta in-place:
|
||||
|
||||
```python
|
||||
# ✅ Correto - modificar in-place
|
||||
def sanitize_input(context: ToolCallHookContext) -> None:
|
||||
context.tool_input['query'] = context.tool_input['query'].lower()
|
||||
|
||||
# ❌ Errado - substitui referência do dict
|
||||
def wrong_approach(context: ToolCallHookContext) -> None:
|
||||
context.tool_input = {'query': 'nova consulta'}
|
||||
```
|
||||
|
||||
## Métodos de Registro
|
||||
|
||||
### 1. Registro Baseado em Decoradores (Recomendado)
|
||||
|
||||
Use decoradores para sintaxe mais limpa:
|
||||
|
||||
```python
|
||||
from crewai.hooks import before_tool_call, after_tool_call
|
||||
|
||||
@before_tool_call
|
||||
def block_dangerous_tools(context):
|
||||
"""Bloqueia ferramentas perigosas."""
|
||||
dangerous_tools = ['delete_database', 'drop_table', 'rm_rf']
|
||||
if context.tool_name in dangerous_tools:
|
||||
print(f"⛔ Ferramenta perigosa bloqueada: {context.tool_name}")
|
||||
return False # Bloquear execução
|
||||
return None
|
||||
|
||||
@after_tool_call
|
||||
def sanitize_results(context):
|
||||
"""Sanitiza resultados."""
|
||||
if context.tool_result and "password" in context.tool_result.lower():
|
||||
return context.tool_result.replace("password", "[CENSURADO]")
|
||||
return None
|
||||
```
|
||||
|
||||
### 2. Hooks com Escopo de Crew
|
||||
|
||||
Registre hooks para uma instância específica de crew:
|
||||
|
||||
```python
|
||||
from crewai import CrewBase
|
||||
from crewai.project import crew
|
||||
from crewai.hooks import before_tool_call_crew, after_tool_call_crew
|
||||
|
||||
@CrewBase
|
||||
class MyProjCrew:
|
||||
@before_tool_call_crew
|
||||
def validate_tool_inputs(self, context):
|
||||
# Aplica-se apenas a esta crew
|
||||
if context.tool_name == "web_search":
|
||||
if not context.tool_input.get('query'):
|
||||
print("❌ Consulta de busca inválida")
|
||||
return False
|
||||
return None
|
||||
|
||||
@after_tool_call_crew
|
||||
def log_tool_results(self, context):
|
||||
# Logging de ferramenta específico da crew
|
||||
print(f"✅ {context.tool_name} concluída")
|
||||
return None
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Casos de Uso Comuns
|
||||
|
||||
### 1. Guardrails de Segurança
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def safety_check(context: ToolCallHookContext) -> bool | None:
|
||||
"""Bloqueia ferramentas que podem causar danos."""
|
||||
destructive_tools = [
|
||||
'delete_file',
|
||||
'drop_table',
|
||||
'remove_user',
|
||||
'system_shutdown'
|
||||
]
|
||||
|
||||
if context.tool_name in destructive_tools:
|
||||
print(f"🛑 Ferramenta destrutiva bloqueada: {context.tool_name}")
|
||||
return False
|
||||
|
||||
# Avisar em operações sensíveis
|
||||
sensitive_tools = ['send_email', 'post_to_social_media', 'charge_payment']
|
||||
if context.tool_name in sensitive_tools:
|
||||
print(f"⚠️ Executando ferramenta sensível: {context.tool_name}")
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### 2. Gate de Aprovação Humana
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def require_approval_for_actions(context: ToolCallHookContext) -> bool | None:
|
||||
"""Requer aprovação para ações específicas."""
|
||||
approval_required = [
|
||||
'send_email',
|
||||
'make_purchase',
|
||||
'delete_file',
|
||||
'post_message'
|
||||
]
|
||||
|
||||
if context.tool_name in approval_required:
|
||||
response = context.request_human_input(
|
||||
prompt=f"Aprovar {context.tool_name}?",
|
||||
default_message=f"Entrada: {context.tool_input}\nDigite 'sim' para aprovar:"
|
||||
)
|
||||
|
||||
if response.lower() != 'sim':
|
||||
print(f"❌ Execução de ferramenta negada: {context.tool_name}")
|
||||
return False
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### 3. Validação e Sanitização de Entrada
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def validate_and_sanitize_inputs(context: ToolCallHookContext) -> bool | None:
|
||||
"""Valida e sanitiza entradas."""
|
||||
# Validar consultas de busca
|
||||
if context.tool_name == 'web_search':
|
||||
query = context.tool_input.get('query', '')
|
||||
if len(query) < 3:
|
||||
print("❌ Consulta de busca muito curta")
|
||||
return False
|
||||
|
||||
# Sanitizar consulta
|
||||
context.tool_input['query'] = query.strip().lower()
|
||||
|
||||
# Validar caminhos de arquivo
|
||||
if context.tool_name == 'read_file':
|
||||
path = context.tool_input.get('path', '')
|
||||
if '..' in path or path.startswith('/'):
|
||||
print("❌ Caminho de arquivo inválido")
|
||||
return False
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### 4. Sanitização de Resultado
|
||||
|
||||
```python
|
||||
@after_tool_call
|
||||
def sanitize_sensitive_data(context: ToolCallHookContext) -> str | None:
|
||||
"""Sanitiza dados sensíveis."""
|
||||
if not context.tool_result:
|
||||
return None
|
||||
|
||||
import re
|
||||
result = context.tool_result
|
||||
|
||||
# Remover chaves de API
|
||||
result = re.sub(
|
||||
r'(api[_-]?key|token)["\']?\s*[:=]\s*["\']?[\w-]+',
|
||||
r'\1: [CENSURADO]',
|
||||
result,
|
||||
flags=re.IGNORECASE
|
||||
)
|
||||
|
||||
# Remover endereços de email
|
||||
result = re.sub(
|
||||
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
|
||||
'[EMAIL-CENSURADO]',
|
||||
result
|
||||
)
|
||||
|
||||
# Remover números de cartão de crédito
|
||||
result = re.sub(
|
||||
r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b',
|
||||
'[CARTÃO-CENSURADO]',
|
||||
result
|
||||
)
|
||||
|
||||
return result
|
||||
```
|
||||
|
||||
### 5. Análise de Uso de Ferramenta
|
||||
|
||||
```python
|
||||
import time
|
||||
from collections import defaultdict
|
||||
|
||||
tool_stats = defaultdict(lambda: {'count': 0, 'total_time': 0, 'failures': 0})
|
||||
|
||||
@before_tool_call
|
||||
def start_timer(context: ToolCallHookContext) -> None:
|
||||
context.tool_input['_start_time'] = time.time()
|
||||
return None
|
||||
|
||||
@after_tool_call
|
||||
def track_tool_usage(context: ToolCallHookContext) -> None:
|
||||
start_time = context.tool_input.get('_start_time', time.time())
|
||||
duration = time.time() - start_time
|
||||
|
||||
tool_stats[context.tool_name]['count'] += 1
|
||||
tool_stats[context.tool_name]['total_time'] += duration
|
||||
|
||||
if not context.tool_result or 'error' in context.tool_result.lower():
|
||||
tool_stats[context.tool_name]['failures'] += 1
|
||||
|
||||
print(f"""
|
||||
📊 Estatísticas da Ferramenta {context.tool_name}:
|
||||
- Execuções: {tool_stats[context.tool_name]['count']}
|
||||
- Tempo Médio: {tool_stats[context.tool_name]['total_time'] / tool_stats[context.tool_name]['count']:.2f}s
|
||||
- Falhas: {tool_stats[context.tool_name]['failures']}
|
||||
""")
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### 6. Limitação de Taxa
|
||||
|
||||
```python
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
tool_call_history = defaultdict(list)
|
||||
|
||||
@before_tool_call
|
||||
def rate_limit_tools(context: ToolCallHookContext) -> bool | None:
|
||||
"""Limita taxa de chamadas de ferramenta."""
|
||||
tool_name = context.tool_name
|
||||
now = datetime.now()
|
||||
|
||||
# Limpar entradas antigas (mais antigas que 1 minuto)
|
||||
tool_call_history[tool_name] = [
|
||||
call_time for call_time in tool_call_history[tool_name]
|
||||
if now - call_time < timedelta(minutes=1)
|
||||
]
|
||||
|
||||
# Verificar limite de taxa (máximo 10 chamadas por minuto)
|
||||
if len(tool_call_history[tool_name]) >= 10:
|
||||
print(f"🚫 Limite de taxa excedido para {tool_name}")
|
||||
return False
|
||||
|
||||
# Registrar esta chamada
|
||||
tool_call_history[tool_name].append(now)
|
||||
return None
|
||||
```
|
||||
|
||||
### 7. Logging de Debug
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def debug_tool_call(context: ToolCallHookContext) -> None:
|
||||
"""Debug de chamada de ferramenta."""
|
||||
print(f"""
|
||||
🔍 Debug de Chamada de Ferramenta:
|
||||
- Ferramenta: {context.tool_name}
|
||||
- Agente: {context.agent.role if context.agent else 'Desconhecido'}
|
||||
- Tarefa: {context.task.description[:50] if context.task else 'Desconhecida'}...
|
||||
- Entrada: {context.tool_input}
|
||||
""")
|
||||
return None
|
||||
|
||||
@after_tool_call
|
||||
def debug_tool_result(context: ToolCallHookContext) -> None:
|
||||
"""Debug de resultado de ferramenta."""
|
||||
if context.tool_result:
|
||||
result_preview = context.tool_result[:200]
|
||||
print(f"✅ Preview do Resultado: {result_preview}...")
|
||||
else:
|
||||
print("⚠️ Nenhum resultado retornado")
|
||||
return None
|
||||
```
|
||||
|
||||
## Gerenciamento de Hooks
|
||||
|
||||
### Desregistrando Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import (
|
||||
unregister_before_tool_call_hook,
|
||||
unregister_after_tool_call_hook
|
||||
)
|
||||
|
||||
# Desregistrar hook específico
|
||||
def my_hook(context):
|
||||
...
|
||||
|
||||
register_before_tool_call_hook(my_hook)
|
||||
# Mais tarde...
|
||||
success = unregister_before_tool_call_hook(my_hook)
|
||||
print(f"Desregistrado: {success}")
|
||||
```
|
||||
|
||||
### Limpando Hooks
|
||||
|
||||
```python
|
||||
from crewai.hooks import (
|
||||
clear_before_tool_call_hooks,
|
||||
clear_after_tool_call_hooks,
|
||||
clear_all_tool_call_hooks
|
||||
)
|
||||
|
||||
# Limpar tipo específico de hook
|
||||
count = clear_before_tool_call_hooks()
|
||||
print(f"Limpou {count} hooks antes")
|
||||
|
||||
# Limpar todos os hooks de ferramenta
|
||||
before_count, after_count = clear_all_tool_call_hooks()
|
||||
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
|
||||
```
|
||||
|
||||
## Padrões Avançados
|
||||
|
||||
### Execução Condicional de Hook
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def conditional_blocking(context: ToolCallHookContext) -> bool | None:
|
||||
"""Bloqueia apenas em condições específicas."""
|
||||
# Bloquear apenas para agentes específicos
|
||||
if context.agent and context.agent.role == "junior_agent":
|
||||
if context.tool_name in ['delete_file', 'send_email']:
|
||||
print(f"❌ Agentes júnior não podem usar {context.tool_name}")
|
||||
return False
|
||||
|
||||
# Bloquear apenas durante tarefas específicas
|
||||
if context.task and "sensível" in context.task.description.lower():
|
||||
if context.tool_name == 'web_search':
|
||||
print("❌ Busca na web bloqueada para tarefas sensíveis")
|
||||
return False
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
### Modificação de Entrada com Consciência de Contexto
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def enhance_tool_inputs(context: ToolCallHookContext) -> None:
|
||||
"""Adiciona contexto baseado no papel do agente."""
|
||||
# Adicionar contexto baseado no papel do agente
|
||||
if context.agent and context.agent.role == "researcher":
|
||||
if context.tool_name == 'web_search':
|
||||
# Adicionar restrições de domínio para pesquisadores
|
||||
context.tool_input['domains'] = ['edu', 'gov', 'org']
|
||||
|
||||
# Adicionar contexto baseado na tarefa
|
||||
if context.task and "urgente" in context.task.description.lower():
|
||||
if context.tool_name == 'send_email':
|
||||
context.tool_input['priority'] = 'high'
|
||||
|
||||
return None
|
||||
```
|
||||
|
||||
## Melhores Práticas
|
||||
|
||||
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
|
||||
2. **Evite Computação Pesada**: Hooks executam em cada chamada de ferramenta
|
||||
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
|
||||
4. **Use Type Hints**: Aproveite `ToolCallHookContext` para melhor suporte IDE
|
||||
5. **Documente Condições de Bloqueio**: Deixe claro quando/por que ferramentas são bloqueadas
|
||||
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
|
||||
7. **Limpe Hooks em Testes**: Use `clear_all_tool_call_hooks()` entre execuções de teste
|
||||
8. **Modifique In-Place**: Sempre modifique `context.tool_input` in-place, nunca substitua
|
||||
9. **Registre Decisões Importantes**: Especialmente ao bloquear execução de ferramenta
|
||||
10. **Considere Performance**: Cache validações caras quando possível
|
||||
|
||||
## Tratamento de Erros
|
||||
|
||||
```python
|
||||
@before_tool_call
|
||||
def safe_validation(context: ToolCallHookContext) -> bool | None:
|
||||
try:
|
||||
# Sua lógica de validação
|
||||
if not validate_input(context.tool_input):
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"⚠️ Erro no hook: {e}")
|
||||
# Decida: permitir ou bloquear em erro
|
||||
return None # Permitir execução apesar do erro
|
||||
```
|
||||
|
||||
## Segurança de Tipos
|
||||
|
||||
```python
|
||||
from crewai.hooks import ToolCallHookContext, BeforeToolCallHookType, AfterToolCallHookType
|
||||
|
||||
# Anotações de tipo explícitas
|
||||
def my_before_hook(context: ToolCallHookContext) -> bool | None:
|
||||
return None
|
||||
|
||||
def my_after_hook(context: ToolCallHookContext) -> str | None:
|
||||
return None
|
||||
|
||||
# Registro type-safe
|
||||
register_before_tool_call_hook(my_before_hook)
|
||||
register_after_tool_call_hook(my_after_hook)
|
||||
```
|
||||
|
||||
## Solução de Problemas
|
||||
|
||||
### Hook Não Está Executando
|
||||
- Verifique se hook está registrado antes da execução da crew
|
||||
- Verifique se hook anterior retornou `False` (bloqueia execução e hooks subsequentes)
|
||||
- Garanta que assinatura do hook corresponda ao tipo esperado
|
||||
|
||||
### Modificações de Entrada Não Funcionam
|
||||
- Use modificações in-place: `context.tool_input['key'] = value`
|
||||
- Não substitua o dict: `context.tool_input = {}`
|
||||
|
||||
### Modificações de Resultado Não Funcionam
|
||||
- Retorne a string modificada dos hooks posteriores
|
||||
- Retornar `None` mantém o resultado original
|
||||
- Garanta que a ferramenta realmente retornou um resultado
|
||||
|
||||
### Ferramenta Bloqueada Inesperadamente
|
||||
- Verifique todos os hooks antes por condições de bloqueio
|
||||
- Verifique ordem de execução do hook
|
||||
- Adicione logging de debug para identificar qual hook está bloqueando
|
||||
|
||||
## Conclusão
|
||||
|
||||
Os Hooks de Chamada de Ferramenta fornecem capacidades poderosas para controlar e monitorar execução de ferramentas no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, validação de entrada, sanitização de resultado, logging e análise. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes seguros e prontos para produção com observabilidade abrangente.
|
||||
|
||||
Reference in New Issue
Block a user