feat: improve data training for models up to 7B parameters (#3085)

* feat: improve data training for models up to 7B parameters.

* docs: training considerations for small models to the documentation
This commit is contained in:
Lucas Gomide
2025-07-01 12:47:47 -03:00
committed by GitHub
parent 2ab002a5bf
commit 49c0144154
5 changed files with 296 additions and 7 deletions

View File

@@ -1,13 +1,15 @@
from unittest import mock
from unittest.mock import MagicMock, patch
from crewai.utilities.evaluators.task_evaluator import (
TaskEvaluator,
TrainingTaskEvaluation,
)
from crewai.utilities.converter import ConverterError
@patch("crewai.utilities.evaluators.task_evaluator.Converter")
@patch("crewai.utilities.evaluators.task_evaluator.TrainingConverter")
def test_evaluate_training_data(converter_mock):
training_data = {
"agent_id": {
@@ -63,3 +65,39 @@ def test_evaluate_training_data(converter_mock):
mock.call().to_pydantic(),
]
)
@patch("crewai.utilities.converter.Converter.to_pydantic")
@patch("crewai.utilities.training_converter.TrainingConverter._convert_field_by_field")
def test_training_converter_fallback_mechanism(convert_field_by_field_mock, to_pydantic_mock):
training_data = {
"agent_id": {
"data1": {
"initial_output": "Initial output 1",
"human_feedback": "Human feedback 1",
"improved_output": "Improved output 1",
},
"data2": {
"initial_output": "Initial output 2",
"human_feedback": "Human feedback 2",
"improved_output": "Improved output 2",
},
}
}
agent_id = "agent_id"
to_pydantic_mock.side_effect = ConverterError("Failed to convert directly")
expected_result = TrainingTaskEvaluation(
suggestions=["Fallback suggestion"],
quality=6.5,
final_summary="Fallback summary"
)
convert_field_by_field_mock.return_value = expected_result
original_agent = MagicMock()
result = TaskEvaluator(original_agent=original_agent).evaluate_training_data(
training_data, agent_id
)
assert result == expected_result
to_pydantic_mock.assert_called_once()
convert_field_by_field_mock.assert_called_once()

View File

@@ -0,0 +1,97 @@
from unittest.mock import MagicMock, patch
from pydantic import BaseModel, Field
from typing import List
from crewai.utilities.converter import ConverterError
from crewai.utilities.training_converter import TrainingConverter
class TestModel(BaseModel):
string_field: str = Field(description="A simple string field")
list_field: List[str] = Field(description="A list of strings")
number_field: float = Field(description="A number field")
class TestTrainingConverter:
def setup_method(self):
self.llm_mock = MagicMock()
self.test_text = "Sample text for evaluation"
self.test_instructions = "Convert to JSON format"
self.converter = TrainingConverter(
llm=self.llm_mock,
text=self.test_text,
model=TestModel,
instructions=self.test_instructions
)
@patch("crewai.utilities.converter.Converter.to_pydantic")
def test_fallback_to_field_by_field(self, parent_to_pydantic_mock):
parent_to_pydantic_mock.side_effect = ConverterError("Failed to convert directly")
llm_responses = {
"string_field": "test string value",
"list_field": "- item1\n- item2\n- item3",
"number_field": "8.5"
}
def llm_side_effect(messages):
prompt = messages[1]["content"]
if "string_field" in prompt:
return llm_responses["string_field"]
elif "list_field" in prompt:
return llm_responses["list_field"]
elif "number_field" in prompt:
return llm_responses["number_field"]
return "unknown field"
self.llm_mock.call.side_effect = llm_side_effect
result = self.converter.to_pydantic()
assert result.string_field == "test string value"
assert result.list_field == ["item1", "item2", "item3"]
assert result.number_field == 8.5
parent_to_pydantic_mock.assert_called_once()
assert self.llm_mock.call.call_count == 3
def test_ask_llm_for_field(self):
field_name = "test_field"
field_description = "This is a test field description"
expected_response = "Test response"
self.llm_mock.call.return_value = expected_response
response = self.converter._ask_llm_for_field(field_name, field_description)
assert response == expected_response
self.llm_mock.call.assert_called_once()
call_args = self.llm_mock.call.call_args[0][0]
assert call_args[0]["role"] == "system"
assert f"Extract the {field_name}" in call_args[0]["content"]
assert call_args[1]["role"] == "user"
assert field_name in call_args[1]["content"]
assert field_description in call_args[1]["content"]
def test_process_field_value_string(self):
response = " This is a string with extra whitespace "
result = self.converter._process_field_value(response, str)
assert result == "This is a string with extra whitespace"
def test_process_field_value_list_with_bullet_points(self):
response = "- Item 1\n- Item 2\n- Item 3"
result = self.converter._process_field_value(response, List[str])
assert result == ["Item 1", "Item 2", "Item 3"]
def test_process_field_value_list_with_json(self):
response = '["Item 1", "Item 2", "Item 3"]'
with patch("crewai.utilities.training_converter.json.loads") as json_mock:
json_mock.return_value = ["Item 1", "Item 2", "Item 3"]
result = self.converter._process_field_value(response, List[str])
assert result == ["Item 1", "Item 2", "Item 3"]
def test_process_field_value_float(self):
response = "The quality score is 8.5 out of 10"
result = self.converter._process_field_value(response, float)
assert result == 8.5